Из какого материала сделан проводник коаксиального кабеля. Комбинированные кабели марки КВК. Виды коаксиальных кабелей

Коаксиальный кабель

Коаксиа́льный ка́бель (от лат. co - совместно и axis - ось, то есть «соосный»), также известный как коаксиал (от англ. coaxial ), - электрический кабель , состоящий из расположенных соосно центрального проводника и экрана. Обычно служит для передачи высокочастотных сигналов. Изобретён и запатентован в 1880 году британским физиком Оливером Хевисайдом .

Телевизионный коаксиальный кабель типа RG-59

Устройство

Коаксиальный кабель (см. рисунок) состоит из:

  • 4 (A) - оболочки (служит для изоляции и защиты от внешних воздействий) из светостабилизированного (то есть устойчивого к ультрафиолетовому излучению солнца) полиэтилена, поливинилхлорида, повива фторопластовой ленты или иного изоляционного материала;
  • 3 (B) - внешнего проводника (экрана) в виде оплетки, фольги, покрытой слоем алюминия пленки и их комбинаций, а также гофрированной трубки, повива металлических лент и др. из меди, медного или алюминиевого сплава;
  • 2 (C) - изоляции, выполненной в виде сплошного (полиэтилен , вспененный полиэтилен, сплошной фторопласт , фторопластовая лента и т. п.) или полувоздушного (кордельно-трубчатый повив, шайбы и др.) диэлектрического заполнения, обеспечивающей постоянство взаимного расположения (соосность) внутреннего и внешнего проводников;
  • 1 (D) - внутреннего проводника в виде одиночного прямолинейного (как на рисунке) или свитого в спираль провода, многожильного провода, трубки, выполняемых из меди , медного сплава, алюминиевого сплава, омеднённой стали , омеднённого алюминия, посеребрённой меди и т. п.

Благодаря совпадению осей обоих проводников у идеального коаксиального кабеля оба компонента электромагнитного поля полностью сосредоточены в пространстве между проводниками (в диэлектрической изоляции) и не выходят за пределы кабеля, что исключает потери электромагнитной энергии на излучение и защищает кабель от внешних электромагнитных наводок. В реальных кабелях ограниченные выход излучения наружу и чувствительность к наводкам обусловлены отклонениями геометрии от идеальности.

История создания

Применение

Основное назначение коаксиального кабеля - передача высокочастотного сигнала в различных областях техники:

  • системы связи;
  • вещательные сети;
  • антенно-фидерные системы;
  • АСУ и другие производственные и научно-исследовательские технические системы;
  • системы дистанционного управления, измерения и контроля;
  • системы сигнализации и автоматики ;
  • системы объективного контроля и видеонаблюдения;
  • каналы связи различных радиоэлектронных устройств мобильных объектов (судов, летательных аппаратов и др.);
  • внутриблочные и межблочные связи в составе радиоэлектронной аппаратуры;
  • каналы связи в бытовой и любительской технике;
  • военная техника и другие области специального применения.

Кроме канализации сигнала, отрезки кабеля могут использоваться и для других целей:

  • кабельные линии задержки ;
  • симметрирующие и согласующие устройства;
  • фильтры и формирователи импульса.

Существуют коаксиальные кабели для передачи низкочастотных сигналов (в этом случае оплётка служит в качестве экрана) и для постоянного тока высокого напряжения. Для таких кабелей волновое сопротивление не нормируется.

Классификация

По назначению - для систем кабельного телевидения, для систем связи, авиационной, космической техники, компьютерных сетей, бытовой техники и т. д.

Международные обозначения

Системы обозначений в разных странах устанавливаются международными, национальными стандартами, а также собственными стандартами предприятий-изготовителей (наиболее распространённые серии марок RG, DG, SAT).

Категории

Кабели делятся по шкале Radio Guide. Наиболее распространённые категории кабеля:

  • RG-11 и RG-8 - «толстый Ethernet» (Thicknet), 75 Ом и 50 Ом соответственно. Стандарт 10BASE-5 ;
  • RG-58 - «тонкий Ethernet» (Thinnet), 50 Ом. Стандарт 10BASE-2 :
  • RG-58/U - сплошной центральный проводник,
  • RG-58A/U - многожильный центральный проводник,
  • RG-58C/U - военный кабель;
  • RG-59 - телевизионный кабель (Broadband/Cable Television), 75 Ом. Российский аналог РК-75-х-х («радиочастотный кабель»);
  • RG-6 - телевизионный кабель (Broadband/Cable Television), 75 ом. Кабель категории RG-6 имеет несколько разновидностей, которые характеризируют его тип и материал исполнения. Российский аналог РК-75-х-х;
  • RG-11- магистральный кабель, практически незаменим, если требуется решить вопрос с большими расстояниями. Этот вид кабеля можно использовать даже на расстояниях около 600 м. Укреплённая внешняя изоляция позволяет без проблем использовать этот кабель в сложных условиях (улица, колодцы). Существует вариант S1160 с тросом, который используется для надёжной проброски кабеля по воздуху, например, между домами;
  • RG-62 - ARCNet , 93 Ом.

«Тонкий» Ethernet

Был наиболее распространённым кабелем для построения локальных сетей . Диаметр примерно 6 мм и значительная гибкость позволяли ему быть проложенным практически в любых местах. Кабели соединялись друг с другом и с сетевой платой в компьютере при помощи T-коннектора BNC . Между собой кабели могли соединяться с помощью I-коннектора BNC (прямое соединение). На обоих концах сегмента должны быть установлены терминаторы. Поддерживает передачу данных до 10 Мбит/с на расстояние до 185 м.

«Толстый» Ethernet

Более толстый, по сравнению с предыдущим, кабель - около 12 мм в диаметре, имел более толстый центральный проводник. Плохо гнулся и имел значительную стоимость. Кроме того, при присоединении к компьютеру были некоторые сложности - использовались трансиверы AUI (Attachment Unit Interface), присоединённые к сетевой карте с помощью ответвления, пронизывающего кабель, т. н. «вампирчики». За счёт более толстого проводника передачу данных можно было осуществлять на расстояние до 500 м со скоростью 10 Мбит/с. Однако сложность и дороговизна установки не дали этому кабелю такого широкого распространения, как RG-58. Исторически фирменный кабель RG-8 имел жёлтую окраску, и поэтому иногда можно встретить название «Жёлтый Ethernet» (англ. Yellow Ethernet ).

Вспомогательные элементы коаксиального тракта

  • Коаксиальные разъёмы - для подключения кабелей к устройствам или их сочленения между собой, иногда кабели выпускаются из производства с установленными разъёмами.
  • Коаксиальные переходы - для сочленения между собой кабелей с непарными друг другу разъёмами.
  • Коаксиальные тройники , направленные ответвители и циркуляторы - для разветвлений и ответвлений в кабельных сетях.
  • Коаксиальные трансформаторы - для согласования по волновому сопротивлению при соединении кабеля с устройством или кабелей между собой.
  • Оконечные и проходные коаксиальные нагрузки, как правило, согласованные - для установления нужных режимов волны в кабеле.
  • Коаксиальные аттенюаторы - для ослабления уровня сигнала в кабеле до необходимого значения.
  • Ферритовые вентили - для поглощения обратной волны в кабеле.
  • Грозоразрядники на базе металлических изоляторов или газоразрядных устройств - для защиты кабеля и аппаратуры от атмосферных разрядов.
  • Коаксиальные переключатели, реле и электронные коммутирующие коаксиальные устройства - для коммутации коаксиальных линий.
  • Коаксиально-волноводные и коаксиально-полосковые переходы, симметрирующие устройства - для состыковки коаксиальных линий с волноводными, полосковыми и симметричными двухпроводными.
  • Проходные и оконечные детекторные головки - для контроля высокочастотного сигнала в кабеле по его огибающей.

Основные нормируемые характеристики

  • Погонное ослабление на разных частотах
  • Погонная ёмкость
  • Погонная индуктивность
  • Диаметр центральной жилы
  • Внутренний диаметр экрана
  • Внешний диаметр оболочки
  • Максимальная передаваемая мощность
  • Максимальное допустимое напряжение
  • Минимальный радиус изгиба кабеля

Расчёт характеристик

Определение погонной ёмкости, погонной индуктивности и волнового сопротивления коаксиального кабеля по известным геометрическим размерам проводится следующим образом.

Сначала необходимо измерить внутренний диаметр D экрана, сняв защитную оболочку с конца кабеля и завернув оплетку (внешний диаметр внутренней изоляции). Затем измеряют диаметр d центральной жилы, сняв предварительно изоляцию. Третий параметр кабеля, который необходимо знать для определения волнового сопротивления, - относительная диэлектрическая проницаемость ε материала внутренней изоляции.

Погонная ёмкость C h (в системе СИ , результат выражен в фарадах на метр) вычисляется по формуле ёмкости цилиндрического конденсатора :

где ε 0 - электрическая постоянная .

Погонная индуктивность L h (в системе СИ, результат выражен в генри на метр) вычисляется по формуле

где μ 0 - магнитная постоянная , μ - относительная магнитная проницаемость изоляционного материала, которая во всех практически важных случаях близка к 1.

Волновое сопротивление коаксиального кабеля в системе СИ :

(приближённое равенство справедливо в предположении, что μ = 1).

Волновое сопротивление коаксиального кабеля можно также определить по номограмме, приведённой на рисунке. Для этого необходимо соединить прямой линией точки на шкале D/d (отношения внутреннего диаметра экрана и диаметра внутренней жилы) и на шкале ε (диэлектрической проницаемости внутренней изоляции кабеля). Точка пересечения проведённой прямой со шкалой R номограммы соответствует искомому волновому сопротивлению.

Скорость распространения сигнала в кабеле вычисляется по формуле

где c - скорость света . При измерениях задержек в трактах, проектировании кабельных линий задержек и т. п. бывает полезно выражать длину кабеля в наносекундах, для чего используется обратная скорость сигнала, выраженная в наносекундах на метр: 1/v = √ ε ·3,33 нс/м .

Предельное электрическое напряжение, передаваемое коаксиальным кабелем, определяется электрической прочностью S изолятора (в вольтах на метр), диаметром внутреннего проводника (поскольку максимальная напряжённость электрического поля в цилиндрическом конденсаторе достигается возле внутренней обкладки) и в меньшей степени диаметром внешнего проводника:

Кабели с разрывами в экранирующей оболочке используются в качестве распределённых антенн.

Коаксиальный кабель (коаксиальная пара) - Пара, проводники которой расположены соосно и разделены изоляцией.

Коаксиальный кабель (от лат. co - совместно и axis - ось, то есть «соосный»), также известный как коаксиал (от англ. coaxial), - электрический кабель, состоящий из расположенных соосно центрального проводника и экрана и служащий для передачи высокочастотных сигналов.

1. Внутреннего проводника в виде одиночного прямолинейного (как на рисунке) или свитого в спираль провода, многожильного провода, трубки, выполняемых из меди, медного сплава, алюминиевого сплава, омеднённой стали, омедненного алюминия, посеребренной меди и т. п.

Коаксиальный кабель состоит из:

Устройство коаксиального кабеля

2. Изоляции, выполненной в виде сплошного (полиэтилен, вспененный полиэтилен, сплошной фторопласт, фторопластовая лента и т. п.) или полувоздушного (кордельно-трубчатый повив, шайбы и др.) диэлектрического заполнения, обеспечивающей постоянство взаимного расположения (соосность) внутреннего и внешнего проводников;

3. Внешнего проводника (экрана) в виде оплетки, фольги, покрытой слоем алюминия пленки и их комбинаций, а также гофрированной трубки, повива металлических лент и др. из меди, медного или алюминиевого сплава;

4. Оболочки (служит для изоляции и защиты от внешних воздействий) из светостабилизированного (то есть устойчивого к ультрафиолетовому излучению солнца) полиэтилена, поливинилхлорида, повива фторопластовой ленты или иного изоляционного материала.

История создания

  • 1929 год - Ллойд Эспеншид (англ. Lloyd Espenschied) и Герман Эффель из AT&T Bell Telephone Laboratories запатентовали первый современный коаксиальный кабель.
  • 1936 год - AT&T построила экспериментальную телевизионную линию передачи на коаксиальном кабеле, между Филадельфией и Нью-Йорком.
  • 1936 год - Первая телепередача по коаксиальному кабелю, с Берлинских Олимпийских Игр в Лейпциге.
  • 1936 год - Между Лондоном и Бирмингемом, почтовой службой (теперь BT) проложен кабель на 40 телефонных номеров.
  • 1941 год - Первое коммерческое использование системы L1 в США, компанией AT&T. Между Миннеаполисом, (Миннесота) и Стивенс Пойнт (Висконсин) запущен ТВ-канал и 480 телефонных номеров.
  • 1956 год - Проложена первая трансатлантическая коаксиальная линия, TAT-1.

Применение

  • системы связи;
  • вещательные сети;
  • антенно-фидерные системы;
  • АСУ и другие производственные и научно-исследовательские технические системы;
  • системы дистанционного управления, измерения и контроля;
  • системы сигнализации и автоматики;
  • системы объективного контроля и видеонаблюдения;
  • каналы связи различных радиоэлектронных устройств мобильных объектов (судов, летательных аппаратов и др.);
  • внутриблочные и межблочные связи в составе радиоэлектронной аппаратуры;
  • каналы связи в бытовой и любительской технике;
  • военная техника и другие области специального применения.

Кроме канализации сигнала, отрезки кабеля могут использоваться и для других целей:

  • кабельные линии задержки;
  • четвертьволновые трансформаторы;
  • симметрирующие и согласующие устройства;
  • фильтры и формирователи импульса.

Классификация


По назначению
- для систем кабельного телевидения, для систем связи, авиационной, космической техники, компьютерных сетей, бытовой техники и т. д.

По волновому сопротивлению (хотя волновое сопротивление кабеля может быть любым), стандартными являются пять значений по российским стандартам и три по международным:

  • 50 Ом - наиболее распространённый тип, применяется в разных областях радиоэлектроники. Причиной выбора данного номинала была, прежде всего, возможность передачи радиосигналов c минимальными потерями в кабеле, а также близкие к предельно достижимым показания электрической прочности и передаваемой мощности (Изюмова, Свиридов, 1975, стр. 51-52);
  • 75 Ом - распространённый тип, применяется преимущественно в телевизионной и видеотехнике (был выбран по причине хорошего отношения механической прочности и себестоимости и применяется там, где мощности небольшие, а метраж велик; при этом потери в кабеле чуть выше, чем для 50 Ом);
  • 100 Ом - применяется редко, в импульсной технике и для специальных целей;
  • 150 Ом - применяется редко, в импульсной технике и для специальных целей, международными стандартами не предусмотрен;
  • 200 Ом - применяется крайне редко, международными стандартами не предусмотрен.

По диаметру изоляции:

  • субминиатюрные - до 1 мм;
  • миниатюрные - 1,5-2,95 мм;
  • среднегабаритные - 3,7-11,5 мм;
  • крупногабаритные - более 11,5 мм.

По гибкости (стойкость к многократным перегибам и механический момент изгиба кабеля):

  • жёсткие;
  • полужёсткие;
  • гибкие;
  • особогибкие.

По степени экранирования:

  • со сплошным экраном:
  1. с экраном из металлической трубки
  2. с экраном из лужёной оплётки
  • с обычным экраном
  1. с однослойной оплёткой
  2. с двух- и многослойной оплёткой и с дополнительными экранирующими слоями
    излучающие кабели, имеющие намеренно низкую (и контролируемую) степень экранировки

Обозначения
Обозначения советских кабелей

По ГОСТ 11326.0-78 марки кабелей должны состоять из букв, означающих тип кабеля, и трёх чисел (разделённых дефисами).

Первое число означает значение номинального волнового сопротивления. Второе число означает:

  • для коаксиальных кабелей - значение номинального диаметра по изоляции, округлённое до ближайшего меньшего целого числа для диаметров более 2 мм (за исключением диаметра 2,95 мм, который должен быть округлен до 3 мм, и диаметра 3,7 мм, который округлять не следует):
  • для кабелей со спиральными внутренними проводниками - значение номинального диамет­ра сердечника;
  • для двухпроводных кабелей с проводниками в отдельных экранах - значение диаметра по изоляции, округлённое так же, как и для коаксиальных кабелей;
  • для двухпроводных кабелей с проводниками в общей изоляции или скрученных из отдельно изолированных проводников - значение наибольшего размера по заполнению или диаметра по скрутке.

Третье - двух- или трёхзначное число - означает: первая цифра - группу изоляции и катего­рию теплостойкости кабеля, а последующие цифры означают порядковый номер разработки. Кабелям соответствующей теплостойкости присвоено следующее цифровое обозначение:

1 - обычной теплостойкости со сплошной изоляцией;
2 - повышенной теплостойкости со сплошной изоляцией;
3 - обычной теплостойкости с полувоздушной изоляцией;
4 - повышенной теплостойкости с полувоздушной изоляцией;
5 - обычной теплостойкости с воздушной изоляцией;
6 - повышенной теплостойкости с воздушной изоляцией;
7 - высокой теплостойкости.

К марке кабелей повышенной однородности или повышенной стабильности параметров в конце через тире добавляют букву С.

Наличие буквы А («абонентский») в конце названия обозначает пониженное качество кабеля - отсутствие части проводников, составляющих экран.

Кабели делятся по шкале Radi Guide. Наиболее распространённые категории кабеля:

  • RG-8 и RG-11 - «Толстый Ethernet» (Thicknet), 50 Ом. Стандарт 10BASE5;
  • RG-58 - «Тонкий Ethernet» (Thinnet), 50 Ом. Стандарт 10BASE2:
  1. RG-58/U - сплошной центральный проводник,
  2. RG-58A/U - многожильный центральный проводник,
  3. RG-58C/U - военный кабель;
  • RG-59 - телевизионный кабель (Bradband/Cable Televisin), 75 Ом. Российский аналог РК-75-х-х («радиочастотный кабель»);
  • RG-6 - телевизионный кабель (Bradband/Cable Televisin), 75 Ом. Кабель категории RG-6 имеет несколько разновидностей, которые характеризируют его тип и материал исполнения. Российский аналог РК-75-х-х;
  • RG-11- магистральный кабель, практически незаменим, если требуется решить вопрос с большими расстояниями. Этот вид кабеля можно использовать даже на расстояниях около 600 м. Укреплённая внешняя изоляция позволяет без проблем использовать этот кабель в сложных условиях (улица, колодцы). Существует вариант S1160 с тросом, который используется для надёжной проброски кабеля по воздуху, например, между домами;
  • RG-62 - ARCNet, 93 Ом

«Тонкий» Ethernet

Был наиболее распространённым кабелем для построения локальных сетей. Диаметр примерно 6 мм и значительная гибкость позволяли ему быть проложенным практически в любых местах. Кабели соединялись друг с другом и с сетевой платой в компьютере при помощи Т-коннектора BNC (Baynet Neill-Cncelman). Между собой кабели могли соединяться с помощью I-коннектора BNC (прямое соединение). На обоих концах сегмента должны быть установлены терминаторы. Поддерживает передачу данных до 10 Мбит/с на расстояние до 185 м.

«Толстый» Ethernet

Более толстый, по сравнению с предыдущим, кабель - около 12 мм в диаметре, имел более толстый центральный проводник. Плохо гнулся и имел значительную стоимость. Кроме того, при присоединении к компьютеру были некоторые сложности - использовались трансиверы AUI (Attachment Unit Interface), присоединённые к сетевой карте с помощью ответвления, пронизывающего кабель, т. н. «вампирчики». За счёт более толстого проводника передачу данных можно было осуществлять на расстояние до 500 м со скоростью 10 Мбит/с. Однако сложность и дороговизна установки не дали этому кабелю такого широкого распространения, как RG-58. Исторически фирменный кабель RG-8 имел жёлтую окраску, и поэтому иногда можно встретить название «Жёлтый Ethernet» (англ. Yellw Ethernet)

Вспомогательные элементы коаксиального тракта

  • Коаксиальные разъёмы - для подключения кабелей к устройствам или их сочленения между собой, иногда кабели выпускаются из производства с установленными разъёмами.
  • Коаксиальные переходы - для сочленения между собой кабелей с непарными друг другу разъёмами.
  • Коаксиальные тройники, направленные ответвители и циркуляторы - для разветвлений и ответвлений в кабельных сетях.
  • Коаксиальные трансформаторы - для согласования по волновому сопротивлению при соединении кабеля с устройством или кабелей между собой.
  • Оконечные и проходные коаксиальные нагрузки, как правило, согласованные - для установления нужных режимов волны в кабеле.
  • Коаксиальные аттенюаторы - для ослабления уровня сигнала в кабеле до необходимого значения.
  • Ферритовые вентили - для поглощения обратной волны в кабеле.
  • Грозоразрядники на базе металлических изоляторов или газоразрядных устройств - для защиты кабеля и аппаратуры от атмосферных разрядов.
  • Коаксиальные переключатели, реле и электронные коммутирующие коаксиальные устройства - для коммутации коаксиальных линий.
  • Коаксиально-волноводные и коаксиально-полосковые переходы, симметрирующие устройства - для состыковки коаксиальных линий с волноводными, полосковыми и симметричными двухпроводными.
  • Проходные и оконечные детекторные головки - для контроля высокочастотного сигнала в кабеле по его огибающей.

Коаксиальный кабель - самый распространенный в практике передачи видеосигналов. Частотная зависимость характеристики затухания от длины ограничивает дистанцию применения требованиями по разрешающей способности в системе. Для систем с высоким разрешением (более 400 ТВЛ) необходимо соблюдать следующие ограничения: для кабелей RG-59 или РК-75-4 максимальная дистанция передачи видео до 300м; для кабелей RG-11 или РК-75-7 максимальная дистанция передачи видео до 500м. При большом пространственном разносе источника и приемника сигналов требуются специальные меры по гальванической развязке. С увеличением длины коаксиального кабеля увеличивается степень воздействия на него внешних помех, растет затухание сигнала при его прохождении по кабелю. При превышении определенной длины кабеля потери в нем приводят сначала к уменьшению яркости, а затем к размытости пикселов и появлению характерного темного шлейфа от темных элементов изображения. Величина затухания зависит от качества материалов, применяемых для изготовления кабеля. О погонном затухании в коаксиальном кабеле типа РК можно судить по его конструкции: чем больше диаметр внутренней изоляции кабелей (в обозначении марки кабеля он указан в миллиметрах после цифры 75), тем меньше его погонное затухание.

Строение коаксиального кабеля

Коаксиальный кабель состоит из центрального проводника, внутреннего диэлектрика, экрана и внешней оболочки.
Центральный проводник кабеля предназначен для передачи сигнала из одной точки в другую. Его делают из материалов, хорошо проводящих электрический ток. Обычно используется медь, которая подходит для этих целей по своим электрическим, механическим и стоимостным параметрам. Другие материалы также могут применяться в каких-то специальных целях. К ним можно отнести алюминий, серебро и золото. Центральный проводник может быть как одножильным, так и многожильным.


Рис. 1. Коаксиальный кабель с центральным одножильным проводником и двойным экраном


Рис. 2. Коаксиальный кабель с центральным многожильным проводником и экраном-оплеткой

Одножильный - это центральный проводник, выполненный в виде одного прямого провода (рис. 1). Одножильный проводник хорошо формуется, но не отличается хорошей гибкостью. Поэтому кабели с одножильным проводником обычно используются в стационарных инсталляциях.
Витой многожильный - представляет собой проводник, состоящий из множества тонких проводов, свитых вместе (рис. 2). Эти кабели гибкие, они легче и применяются в основном в мобильных инсталляциях. Однако по своим характеристикам такой кабель несколько уступает кабелю с одножильным проводником такого же типоразмера.

Внутренний диэлектрик, называемый также внутренней изоляцией кабеля, выполняет в коаксиальных кабелях важную роль. Прежде всего, это материал, который изолирует центральный проводник от экрана. Но кроме того, он определяет импеданс и емкость кабеля.
Обычно в кабелях общего назначения используется полиэтилен, а для производства негорючих кабелей - фторсодержащие полимеры.
Дешевые кабели имеют диэлектрик из твердого полиэтилена. Более серьезный производитель использует вспененный полиэтилен, который обеспечивает более низкое погонное затухание сигнала в кабеле на высоких частотах.
Стоит заметить, что некоторые производители вспенивают диэлектрик химическим способом. В результате получается низкоплотный полиэтиленовый компаунд, подверженный механическим повреждениям и нестабильный к воздействию окружающей среды в виде температуры и влажности.
Наивысшее качество кабеля получается с физически вспененным диэлектриком. Он содержит до 60% воздушных пузырьков, за счет чего уменьшается затухание высоких частот сигнала. По прочности физически вспененный полиэтилен не отличается от обычного твердого невспененного полиэтилена, обеспечивая необходимую гибкость и устойчивость к механическим воздействиям. И, наконец, обладая высокой стойкостью к температурным колебаниям и влажности, физически вспененный диэлектрик обеспечит стабильность параметров и длительную эксплуатацию кабеля.

Экран выполняет две важные роли. Он работает как второй проводник, подключенный к общему «земляному» проводу оборудования. В то же время он экранирует сигнальный проводник от посторонних излучений. Существуют различные методы экранировки для кабелей, выполняющих различные задачи. Это экран из фольги, плетеный экран и комбинации из фольги и оплетки.
Оплетка - экран, который изготавливается из множества тонких проводников, сплетенных в виде сетки, охватывающей центральный проводник с внутренним диэлектриком (см. рис. 2). Оплетка обычно обладает меньшим сопротивлением, чем фольга, и отличается лучшей устойчивостью к постороннему электромагнитному полю и электромагнитным наводкам. Наводки имеют различный характер и происхождение. Это могут быть как низкочастотные наводки (например, от промышленной сети питания), так и высокочастотные (ВЧ-шум от работы электронных приборов и при искрении электрических машин).
Оплетка может сочетаться с другими видами экранов, например с алюминиевой или медной фольгой, которые дают наибольшее значение эффективности экранирования, т.к. фольга позволяет обеспечить до 100% экранировки в сочетании с оплеткой (см. рис. 1). Учитывая, что оплетка может обеспечить эффективность экранировки до 90%, чтобы получить 100%, необходимы две оплетки, что существенно увеличивает стоимость кабеля, его вес и ухудшает гибкость. Гораздо легче добиться 100% эффективности экранировки можно сочетанием оплетки и фольги.Об эффективности экранирования коаксиального кабеля можно судить по его конструкции: чем выше плотность внешнего проводника (экрана), тем больше значение этого параметра.

Необходимую защиту внутренних компонентов кабеля обеспечивает внешняя оболочка. Оболочка защищает кабель от климатического, химического воздействия и предохраняет от солнечного света. По типу оболочки кабели можно разделить на стандартные и специального исполнения.
Стандартный кабель - имеет обычную, чаще всего поливинилхлоридную оболочку, которая защищает кабель (в том числе и многожильный) от механических воздействий и влаги, а также играет роль электрической изоляции.

Основные параметры коаксиального кабеля

Импеданс - основной показатель, определяющий возможность передачи энергии сигнала по кабелю между источником и приемником. Все элементы на пути сигнала, разъемы и сам кабель должны иметь один импеданс. Несоблюдение этого правила приводит к внутренним отражениям в кабеле, что может привести к появлению на изображении двойных контуров. Самой частой причиной появления отражений являются некачественные разъемы или их неправильная установка, а также применение разъемов и кабелей разного импеданса.
Стандартный импеданс видеокабелей составляет 75 Ом.

Затухание - показатель потерь энергии сигнала внутри кабеля. Каждый кабель имеет свои частотные свойства, поэтому ослабление на разных частотах тоже разное и чем частота выше, тем ослабление больше.

Сопротивление - показатель качества проводника, буквально показывающий, какая часть энергии сигнала превратится в тепло. Результат таких потерь - снижение уровня сигнала, а соответственно, динамической яркости изображения.
Сопротивление измеряется в омах (Ω), и именуется иначе как сопротивление постоянному току или активное сопротивление. Для кабелей сопротивление указывается как Ом на 100 метров (Ω/100m) или Ом на 1000 футов (Ω/1,000 feet) и может именоваться также как погонное сопротивление.
Сопротивление зависит от материала проводника, его размеров и температуры.
Лучшие кабели имеют сигнальные проводники из химически чистой меди или покрываются тонким слоем серебра.

Емкость . По конструкции любой коаксиальный кабель - вытянутый конденсатор. Емкость измеряется в фарадах (F), а емкость кабеля в пикофарадах на метр (pF/m) или в пикофарадах на фут (pF/ft).
Емкость кабеля влияет на высокочастотные составляющие видеосигнала, то есть на четкость и детализацию изображения. Емкость определяется качеством диэлектрика и конструкцией кабеля. Этот параметр особенно важен при передаче цифровых сигналов.

Применяемые для систем видеонаблюдения коаксильные кабели всех видов (кабели снижения, магистральный кабель, распределительный кабель, абонентский кабель) должны иметь волновое сопротивление 75 Ом.
Условные обозначения отечественных коаксиальных кабелей согласно ГОСТу 11326.0.78 имеет следующий вид:РК.W-d-mn-q.
Первые две буквы (РК) указывают тип кабеля-радиочастотный, коаксиальный.
Первое число W означает величину номинального волнового сопротивления (50, 75, 100, 150, 200 Ом).
Второе число d соответствует номинальному диаметру изоляции округленному до меньшего ближайшего целого числа для диаметров более 2 мм (за исключением диаметра 2,95 мм, который округляется до 3 мм и диаметра 3,7 мм, который не округляется).
В зависимости от диаметра по изоляции кабеля подразделяются на субминиатюрные (до 1 мм), миниатюрные (1,5-2,95 мм), среднегабаритные (3,7-11,5 мм) и крупногабаритные (более 11,5 мм). Номинальный диаметр по изоляции коаксиального кабеля должен быть равен одной из величин следующего ряда:
0,15; 0,3; 0,6; 0,87; 1; 1,5; 2,2; 2,95; 3,7; 4,6; 4,8; 5,6; 7,25; 9; 11,5; 13; 17,3; 24; 33; 44; 60; 75 мм.
Для соединений между аппаратурой применяются в основном кабели от 5,6 до 7,5мм, для магистральных соединений применяются кабели 9-13 мм. Обычно самый лучший 11,5 мм.
Число «m» обозначает группу изоляции и категорию теплостойкости кабеля:
1-кабели со сплошной изоляцией обычной теплостойкости;
2-кабели со сплошной изоляцией повышенной теплостойкости;
3-кабели с полувоздушной изоляцией обычной теплостойкости;
4-кабели с полувоздушной изоляцией повышенной теплостойкости;
5-кабели с воздушной изоляцией обычной теплостойкости;
6-кабели с воздушной изоляцией повышенной теплостойкости;
7-кабели высокой теплостойкости.
Число « n» указывает на порядковый номер разработки.

В отдельных случаях в условное обозначение вводится дополнительная буква (q) :
С - кабель повышенной однородности и фазовой стабильности;
Г - герметичный;
Б - имеет бронепокров;
ОП - имеет поверх оболочки вылетку стальных оцинкованных проволок.
Например: РК-75-4-11-С-это означает радиочастотный, коаксиальный с номинальным волновым сопротивлением 75 Ом, номинальным диаметром изоляции 4,6 мм, со сплошной изоляцией обычной теплостойкости, порядковый номер разработки 1, кабель повышенной однородности.

Маркировка и обозначения импортных кабелей устанавливается международными, национальными стандартами, а также собственными стандартами предприятий-изготовителей (наиболее распространённые серии марок RG, DG и др.)

При монтаже коаксиальных кабелей необходимо соблюдать минимальные радиусы изгиба (оговариваются в стандарте или ТУ на кабели разных марок).
Так, для кабеля РК-75-4-11 минимальный радиус изгиба при t> +5°C - 40 мм, а при t< +5°C - 70 мм.
Сгибать кабель под меньшим радиусом не рекомендуется. Следует также учитывать, что под действием собственного веса кабель вытягивается.
Это необходимо учитывать при прокладке кабеля (по вертикали) и между строениями. Его следует закреплять к стене (мачте) или вспомогательному тросу через каждые 1-2 м.

При хранении кабелей с воздушной и полувоздушной изоляцией их концы должны быть защищены от проникновения влаги внутрь кабеля, а при эксплуатации необходимо применять герметичные соединители.

Срастить два отрезка коаксиального кабеля 1 можно способом, показаным на рис. 3 для чего освобожденные от изоляции части центральных проводников кабелей необходимо максимально укоротить. Места пайки проводников не должны иметь значительных утолщений, поэтому центральные (внутренние) проводники частично спиливают надфилем (одна сторона проводника окажется плоской). После залуживания оловянно-свинцовым припоем спиленные концы проводников накладывают друг на друга и запаивают. Чтобы не изменить волновое сопротивление, необходимо восстановить на месте сращиваемого участка кабеля внутреннюю изоляцию 3 (предварительно изготавливается из снятой с кабеля внутренней полиэтиленовой изоляции). Деталь 2 вырезают из жести или медной фольги толщиной около 0,1…0,2 мм и устанавливают поверх соединенного участка с восстановленной изоляцией 3. Пайку оплетки кабелей следует произвести в местах вырезов детали 2. Для придания прочности соединению деталь 2 по всей длине целесообразно плотно обмотать изолентой 4.

Рис.3 Способ сращивания коаксильных кабелей.

В пособии к РД 78.145-93 указывается следующий способ сращиваняя коаксильного кабеля:

Снять с концов кабеля, предназначенных для соединения, верхнюю полиэтиленовую оболочку на длине не менее 30 мм от концов;
распустить металлическую оплетку, состоящую из тонких медных проволок на одном конце кабеля на 20 мм, на другом конце обрезать на такую же длину и из распущенных медных проволок оплетки скрутить 4 жгута и залудить;
- залудить оплетку второго конца кабеля по окружности на длине не менее 5 мм (во избежание расплавления полиэтиленовой изоляции центральной жилы, под оплетку, необходимо положить предохраняющую изоляцию из кабельной бумаги в 2 слоя);
- освободить центральную жилу кабеля от изоляции на длину не менее 15 мм;
- скрутить центральные жилы двух кабелей между собой и паять.
Длина оголенного слоя должна быть 15 мм;
- разрезать снятую изоляцию центральной жилы, наложить ее на спай центральных жил и, расправляя паяльником, заделать спай;
- припаять облуженные четыре жгута к облуженной оплетке второго кабеля симметрично со всех сторон;
- надеть на готовое соединение двух кабелей снятую разрезанную вдоль наружную изоляцию и оплавить ее с помощью паяльника с основной изоляцией кабеля.

При пайке центральной жилы нельзя допускать ее перегрева, т. к. при этом происходит смещение и нарушается однородность волнового сопротивления.
При монтаже кабелей и разделке оплеток последние нельзя разрезать: оплетку надо расплести, скрутить в одну или две косички и залудить.
Разделывая кабель, необходимо следить за тем, чтобы случайно не была подрезана центральная жила и чтобы не замкнуть на нее проволочную оплетку.

При такой заделке кабеля его однородность практически не нарушается. В противном случае, на экране видеоконтрольного устройства могут появиться повторы, вертикальные полосы и ухудшается помехозащищенность кабеля.

Если коаксиальный кабель проложен параллельно электросети, возникают проблемы. Величина ЭДС, наведенной в центральной жиле, зависит, во-первых, от тока, протекающего по сетевому кабелю, что, в свою очередь, зависит от тока потребления нагрузки по данной линии. Во-вторых, она зависит от того, насколько далеко коаксиальный кабель пролегает от силового кабеля. И, наконец, она зависит от того, на какой протяженности эти кабели пролегают вместе. Иногда соседство на протяжении 100 м не оказывает никакого влияния, но если по силовому кабелю течет большой ток, то даже 50 м могут сказаться на качестве видеосигнала. При монтаже постарайтесь (всегда, когда это возможно) сделать так, чтобы силовые и коаксиальные кабели не проходили очень близко друг к другу. Для ощутимого уменьшения электромагнитных помех необходимо, чтобы расстояние между ними составляло хотя бы 30 см.
На экране видеомонитора наводки электросети имеют вид нескольких жирных горизонтальных полос, медленно сползающих вверх или вниз. Скорость их перемещения определяется разницей между частотой полей видеосигнала и промышленной частотой, и может составлять от 0 до 1 Гц. В результате на экране появляются неподвижные или очень медленно перемещающиеся полосы. Другие частоты проявляются в виде различных шумовых картин - в зависимости от источника наводок. Главное правило заключается в том, что, чем выше частота наведенного нежелательного сигнала, тем тоньше детали шумовой картины. Периодические наводки, вроде молнии или проезжающего автомобиля, будут давать нерегулярную картину шумов.

Разрыв кабеля посередине и заделка образовавшихся концов приведет к некоторой потере сигнала, особенно, если концы заделаны плохо или использованы некачественные BNC-разъемы. Хорошая заделка дает потерю сигнала не более 0,3:0,5 дБ. Если в кабеле не слишком много подобных сращиваний, то потери сигнала незначительны.

1. Выбор разъемного соединения

Следующим шагом является качественное подключение коаксильного кабеля к оборудованию. Довольно часто один-единственный некачественный разъем приводит к потере качества изображения всей системы. Плохой обжим или пайка зачастую приводят к отражениям сигнала в кабеле, потерям и искажениям.
Выбранный кабель должен быть рассчитан на разделку на него нужного разъема, либо в спецификации нужно предусмотреть соответствующие переходники. Ведущие производители кабеля выпускают также и разъемы для кабеля, либо указывают в спецификациях рекомендуемый тип разъема другого производителя, обеспечивающий качественную разделку разъема на кабель.

Для подсоединения коаксиального кабеля к оборудованию применяют соединения под зажим. Это соединение для приемных телевизионных антенн, видеокамеры наружного наблюдения, и т. д. изображено на рис. 1.

Перед подключением коаксиального кабеля к оборудованию кабель необходимо разделать, залудить места подсоединения, т.е. центральный провод и наружную экранирующую оплетку. Экранирующую оплетку при разделки кабеля заворачивают в два слоя. Место подсоединения кабеля с разъемом необходимо герметизировать. Если это антенна, то необходимо герметизировать антенну коробку, чтобы не попали осадки и не происходило окисления в месте присоединения.

Коаксиальный кабель от места подсоединения до ближайшего соединения обязательно должен быть целый, без разрывов, т. к. в месте соединения двух отрезков нарушается однородность волнового сопротивления, что приводит к появлению отраженного сигнала, потерям уровня проходящего сигнала и повторам изображения.

Разъемы типа BNC.

Для соединения оборудования между элементами видеоохранной системы, систем кабельного телевидения и т. д., применяют разъемные соединения типа BNС, F, CP-75-154 П (вилка), СР-75-155 П (гнездо), СР-75-167 ПВ (вилка),СР-75-158 ПВ (гнездо), СР-75-201 ФВ (вилка), СР-75-202 ФВ (гнездо). Для каждого типа кабеля существуют свои разъемы (это определяется диаметром кабеля)..

В общем, все типы разъемов можно разделить на 3 большие группы. Для пайки (например, отечественные СР-50-74-ПВ), под обжим, и навинчивающиеся (twist-on). Первый вариант несколько надежнее, долговечнее, и даже дешевле остальных. Но требует большого времени, инструмента и высокой квалификации монтажников.

Вариант с использованием обжима наиболее распространен. Как главный недостаток такого разъема можно назвать одноразовость. В случае повреждения соединения его придется отрезать, и установить новый.

Навинчивающие разъемы относительно не надежны. Единственный плюс - легкость монтажа даже в полевых условиях.

Монтаж резьбовых, обжимных и компрессионных разъемов на коаксиальный кабель

а) разъем резьбовой

Берем разъем и начинаем накручивать его корпус на оболочку коаксиального кабеля с загнутой на нее проволочной оплеткой до того момента, пока край диэлектрика не станет ровно с краем корпуса разъема.
Место работы такого разъемного соединения – устоявшийся климат помещения в крайнем случае, отапливаемого подъезда. Не стоит экспериментировать с таким разъемом на улице. Он не герметичен, оплетка, будь она алюминиевая или медная, быстро окисляется, что не идет на пользу электрическим характеристикам соединения.
Для удобства обслуживания около видеокамеры в помещении можно поставить коробку, в которой при помощи разъемов соединяются кабели питания и видеосигнала, выходящие из камеры и приходящие из аппаратуры обработки видеосигнала. Это делается для того, чтобы в случае поломки камеры видеонаблюдения, её можно было быстро и легко заменить.

Край корпуса разъема и край гайки F-типа – это разные вещи. Главная трудность, чтобы размеры коаксиального кабеля по оболочке и разъема по внутреннему диаметру совпали. Как правило, этого добиться труднее всего. Чтобы видеосигнал, который идёт от камер видеонаблюдения в таком случае не пропадал и изображение на экране видеомонитора не дёргалось и не исчезало, накручиваем на конец кабеля изоленту до такой толщины, чтобы она соответствовала диаметру F-разъёма (изолента должна накручиваться плотно, виток к витку). Далее накручиваем F-разъём (если накрутили излишек изоленты, лишнюю уберите, если мало, то намотайте ещё), затем подрезаем лишний экран и укорачиваем центральную жилу.

б) разъем обжимной

Убедившись, что фольга не смята и оплетка равномерно распределена по оболочке кабеля, устанавливаем разъем на коаксиальный кабель, соблюдая те же требования, что и для резьбового разъема. При правильном подборе разъема и кабеля монтаж разъема не должен требовать больших усилий. Единственную трудность представляет монтаж разъема на коаксиальный кабель с полиэтиленовой оболочкой. Она механически более прочная и требует приложения больших усилий при монтаже разъема. Поэтому определенная категория монтажников уверяет свое руководство, что коаксиальный кабель с полиэтиленовой оболочкой очень плохой.

Lля уличной прокладки лучше этой оболочки ничего не придумали. Оболочка из полиэтилена лучше держит перепады температуры, механически более прочная на растяжение и абразивный износ, по сравнению с поливинилхлоридом влагостойкость выше в 20 раз. Как пример можно рассматривать коаксиальный кабель РК 75, который работает на улице еще с советских времен.

Далее приступаем к обжиму разъема.
– Для кабеля RG6 есть два размера обжимного инструмента:
.324’’ для стандартных разъемов (пример F-56-ALM 4,9/8,4 Cabelcon)
.360’’ для разъемов с усиленной и герметичной обжимной частью (пример F-56-UNIV 4,9/8,4 и F-56-EPA 4,9/8,1 Cabelcon, PCT59FS компании PCT)

– Для кабеля RG11 есть один размер.475’’ подходящий для любых модификаций разъемов различных производителей

При несоблюдении обжимных размеров разъема и инструмента гарантированно получаем два варианта. Первый – при обжиме стандартного разъема размером.360’’ разъем обжимается не полностью и с кабеля слетает. Второй – при обжиме усиленного и герметичного разъема размером.324’’ происходит разрушение корпуса разъема.

Обжим разъема плоскогубцами, кусачками, газовыми ключами, молотком и другими попавшими под руку предметами, как правило, ведет к порче оборудования и не приветствуется эксплутационным отделом и руководством.

Рис. 3 Инструменты и материалы, необходимые для оконцовывания коаксиального кабеля.

1. Начать лучше всего с обрезания небольшого кончика кабеля. Хотя на первый взгляд коаксиальный кабель выглядит плотным монолитом, его оплетка очень легко "набирает” воду. А наличие влаги вовсе не способствует возникновению качественного контакта.

2. Зачистка изоляции.
Профессиональные установщики, как правило, используют разделочный инструмент для подготовки коаксиального кабеля к монтажу разъема. Для коаксиального кабеля это весьма деликатная операция, при проведении которой используется специальный инструмент, отдаленно напоминающий бельевую прищепку.
Пара замечаний по этому поводу. Внимательно проверить горизонтальную установку лезвий, которые определяют размер зачищенного центрального проводника и размер снятой оболочки. Второе, не менее важное, это проверить высоту установки лезвия, которое зачищает центральный проводник коаксиального кабеля. Если при разделке кабеля это лезвие будет касаться центрального проводника, а он, как правило, выполнен из обмедненной стальной проволоки, то жизнь этого лезвия, увы, будет совсем недолгой.

Кабель RG закладывается под подпружиненную часть. По инструкции, конец кабеля не должен выступать за габарит устройства. Но в реальности удобнее оставить "снаружи” небольшой запас в 3-5 мм. Это позволит позже исправить некоторые ошибки в работе (если они, конечно, возникнут).

3. Затем устройство несколько раз поворачивается вокруг кабеля, разрезая находящимися внутри ножами изоляцию на фиксированную глубину. Надо отметить, что под каждый тип кабеля может потребоваться индивидуальная настройка ножей.

Рис.4 Надрезание изоляции коаксиального кабеля

4. После надрезания изоляции нужно осторожно удалить отрезанные части. Если все было сделано правильно, то внешний вид конца кабеля должен соответствовать показанному на Рис. 5 и образовывать аккуратные "ступеньки” - оплетка, изолятор - центральная жила.

Рис.5 Зачищенный коаксиальный кабель

5. Далее нужно надеть на центральную жилу контакт. При этом нужно, что бы кончик проводника полностью умещался внутри контакта, а последний краем плотно прилегал к срезу диэлектрика. Но при этом остаток жилы должен быть достаточно длинным, что бы надежно удерживаться всей внутренней поверхностью контакта после его обжимания.

6. Обжимание центрального контакта не требует особых навыков. Достаточно обычной аккуратности. Перепутать штамп почти невозможно, а способ укладки хорошо виден на Рис. 6.




Рис. 6
Обжимание центрального контакта.

Главное не повредить рабочую часть центрального контакта, для чего при обжиме она должна находиться в специальной прорези.

7. Далее нужно надеть на конец кабеля корпус разъема. Но перед этим - не забыть про трубочку, при помощи которой обжимается оплетка. Строго говоря, ее желательно надеть в самом начале работы, еще до надрезания - тогда не будет мешать оплетка. Но не поздно это сделать и непосредственно перед установкой корпуса.

Рис.7 Разъем перед обжиманием оплетки.

Оплетку (и фольгу, если она есть) нужно аккуратно расправить, и пустить поверх хвостовика корпуса разъема. Если кабель имеет редкую или непрочную оплетку, то желательно ее собрать в несколько более плотных "косичек”. Затем нужно поставить трубочку на место.

Рис.8 Обжим оплетки BNC разъема.

Кабель готов к использованию, и его можно присоединять к оборудованию. Ошибиться при выполнении этой операции почти невозможно.

Монтаж компрессионных BNC разъемов

Компрессионные разъемы - последнее достижение в области кабельных соединений.
Для повышения долговечности корпус и муфта коннектора выполнены из латуни, покрытой никелем, а запрессовываемая часть отлита из специального полимера, стойкого к ультрафиолету и климатическим перепадам, что обеспечивает отличную защиту при наружной инсталляции.Такая конструкция более устойчива к климатическим воздействиям и обеспечивает ряд функциональных преимуществ перед традиционными коннекторами.

В отличие от резьбовых и обжимных разъемов, в компрессионных для фиксации на кабеле используется пластиковая втулка, которая загоняется специальным инструментом между металлической цилиндрической частью разъема и оболочкой кабеля и равномерно обжимает кабель по окружности. При этом достигается 100% гидроизоляция со стороны кабеля (со стороны гайки гидроизоляция обеспечивается резиновым кольцом), лучшая экранировка и очень надежное механическое соединение - отрыв разъема возможен лишь путем отрыва оболочки кабеля.
Установка компрессионного разъема не отличается от установки на кабель обжимного разъема. Но принцип крепления компрессионного разъема на кабеле совершенно другой. Компрессионный инструмент сдвигает две части корпуса разъема в продольном направлении, образуя вот такой узел крепления.
На сегодняшний момент компрессионные разъемы обладают самыми высокими механическими и электрическими характеристиками.

Установка выполняется в три шага, как показано на рис. 9.

Рис. 9 Технология разделки компрессионного разъема на кабель.

Для качественной разделки разъемов на кабель лучше использовать фирменный обрезной и обжимной инструмент, рекомендованный для данного типа кабеля и разъемов, иначе качество контакта гарантировать проблематично.

Только обеспечив надежный контакт кабеля с разъемом и надежную фиксацию кабельного разъема в разъеме аппаратном, мы можем быть уверены, что наши усилия по расчету и выбору кабеля не пропали даром. Ибо электроника - это наука о контактах.


2. Лужение и пайка кабеля.

Для лужения и пайки применяют мягкий припой. Радио мастеру необходимо владеть паянием мягким припаем. Мягкий припай представляет собой обычно сплав олова со свинцом с содержанием олова от 30 до 60%. Содержание олова в припае можно установить по хрусту, который издает припай при сгибании его. Хруст тем сильнее, чем больше процент олова.

В соответствии со стандартом олово-свинцовые припои маркируются буквами ПОС и числом, указывающим содержание олова в процентах. С увеличением количества олова от 18% до 64% температура плавления припоя понижается от 2400 до 1800С. Так как олово является дефицитным материалом, рекомендуется применять сплавы с умеренным содержанием олова (чаще всего ПОС-30).

Для производства лужения и пайки применяют электропаяльники мощностью от 25 Вт до 100Вт. Напряжение питания электропаяльников 220 Вт переменного тока или для помещений с повышенной опасностью, или в особо опасных помещениях по технике безопасности применяют электропаяльники с напряжением питания 36-42 В переменного тока.

Наконечник электропаяльника нужно постоянно поддерживать в чистом состоянии и через определенные промежутки времени отчищать от окалины.

При паянии мягким припоем необходимо места спайки тщательно зачистить мелким напильником, ножом или наждачной бумагой. Чтобы уменьшить окисление зачищенной поверхности проводника применяют спирто-канифольную смесь или канифоль для лучшего лужения поверхности, т. е. флюсы. Их наносят на поверхность вместе с припоем. Перед производством пайки проводов или элементов необходимо обе поверхности залудить, а затем производить пайку. Прогревать припой необходимо до полного плавления и образования капли. Затем каплю поднести к месту пайки и прогревать до полного оплавления двух поверхностей. При этом нужно учитывать, что от перегрева может оплавиться изоляционный материал между центральным проводом и экранирующей оплеткой в кабеле. Пайка одной точки должна быть не более 2-х секунд.

При пользовании электропаяльником необходимо проверять, чтобы провод питания был целым и не было оплавленной изоляции. Недопустимо, чтобы один из проводов питания через спираль нагрева касался корпуса паяльника. Ручка паяльника должна быть целой. При пайки не допускать касания шнура питания нагретых деталей паяльника во избежании оплавления изоляции. При пайки элементов, не допускающих статических наводок необходимо паять на заземленных столах и иметь экранирующий браслет.

Коаксиальный кабель широко используется для передачи пакетов сигналов информации в компьютерных сетях, телевизионных сигналов в системах кабельного телевидения, видеонаблюдения и многих других радиотехнических инженерных комплексах. С появлением беспроводных технологий передачи данных Bluetooth или более современной и высокоскоростной Wi-Fi интенсивность использования коаксиального кабеля снизилась.

Коаксиальный кабель для передачи пакетов информации

Недостатки новых технологий:

  • незначительный радиус действия;
  • низкая помехозащищенность;
  • малая скорость процесса передачи информации.

Сети с использованием коаксиальных кабелей ещё востребованы и широко применяются, особенно на военных объектах, где помехозащищенность имеет первостепенное значение.

Конструкция кабеля

Коаксиальный кабель имеет две токопроводящие жилы:

  1. Центральная монолитная медная жила. В некоторых стандартах встречается её многожильное витое исполнение из сплавов меди и с напылением серебряного слоя. Эта жила является сердечником кабеля, она находится в диэлектрической оболочке из полиэтилена.
  2. Внешний экранирующий проводник выглядит как плетёная сетка из меди, медных сплавов или алюминия. Некоторые варианты исполнения кабелей допускают два экранирующих слоя, между которыми диэлектрический слой. Первый используется, как центральная жила для передачи сигналов, другой рассеивает внешние электромагнитные помехи.

Общий вид конструкции коаксиального кабеля

В большинстве случаев внешняя защита кабеля от механических воздействий выполняется устойчивой к ультрафиолетовым лучам полихлорвинидной оболочкой. Есть более дорогие варианты защиты с тефлоновым покрытием.

Виды коаксиальных кабелей

Существует много разновидностей коаксиальных кабелей, некоторые из них достигают несколько сантиметров в диаметре. Они применяются для передачи радиотелевизионных сигналов большой мощности на антенны в передатчиках 1-5 кВт.

Разновидность коаксиальных кабелей

Для построения локальных компьютерных сетей используются кабеля двух стандартов:

  1. Категории RG-58/U или 58A/U, стандарта 10BASE-2 . Его называют тонкий коаксиальный кабель, с диаметром до 6 мм, с волновым сопротивлением 50 Ом, модель RG-58/U – с цельным медным проводом в центре кабеля, в категории 58A/U сердечник состоит из витого многожильного медного провода. Кабель способен передавать информацию без существенных потерь сигнала, скоростью до 10 Мбит/сек, до 185м, соединяются кабели напрямую к компьютерной плате сетевого адаптера.
  1. Категории RG-11 или RG-8, стандарта 10BASE-5:
  • 10BASE-5 – в быту называют толстый коаксиальный кабель, с сечением 12 мм, центральная жила, диаметр, которой значительно толще, позволяет передавать сигналы с меньшим затуханием.
  • В категории RG-11 сопротивление 75 Ом, в модели RG- 8 – 50 Ом. Скорость передачи сигналов 10 Мбит/сек, как в кабелях стандартов 10BASE-2, но расстояние значительно больше до 500 м. Очень часто этот кабель используют как магистральный соединяющий несколько отдельных локальных сетей, подключая его через трансивер. Это устройство, оснащённое коннектором «зуб вампира», который при подключении прокалывает изоляционную оболочку и обеспечивает электрический контакт, с проводником.

Одним из передовых изготовителей коаксиальных кабелей является компания Belden её разработки по усовершенствованию производства, повышению помехозащищенности, дальности передачи сигналов используются многими фирмами. Некоторые технические решения приняты как международные стандарты в производстве.

Кабель Belden

Кабельные сети получили широкое распространение благодаря предоставлению компаниями определённых услуг для потребителей в получении и обработке информации. С переходом на цифровое вещание улучшилось качество кабельного ТВ, появился высокоскоростной интернет, пакеты спутникового телевидения и IP-телефония. Стал активнее использоваться диапазон до 2100 МГц и частоты от 5-65 МГц для передачи сигналов обратного канала.

Кабель Belden отлично зарекомендовал себя в развитии этих технологий, разработчики поняли, что затраты на создание помехозащищенной аппаратуры беспроводной связи очень большие. Дешевле и эффективнее исключить электромагнитные помехи, создавая надёжную экранировку коаксиальных кабелей.

Общий вид кабеля Belden

Технология экранирования DUOBOND® PLUS в кабелях фирмы Belden соответствует самым передовым требования, которые выдвигают потребители.

Особенности технических решений кабеля DUOBOND® PLUS:

  1. Экранировку обеспечивает листовая алюминиевая фольга и медная плетёная сетка, структура внешней экранирующей оболочки трёхслойная, алюминий, полиэстер, и снова алюминий. Всё это надёжно приклеено вокруг диэлектрического слоя из вспененного, азотом полиэтилена, который разделяет центральный провод и многослойный экран. Такая технология изготовления кабеля предотвращает смещение экранирующего слоя, при разделке для крепления разъёмов и при загибах в процессе прокладки. Это техническое решение разработанное, специалистами от компании Belden является уже промышленным стандартом для всех производителей.
  2. Для повышения механической прочности экранирующего слоя и обеспечения эффективности защиты от помех на уровне 85 Дб используется гальваническая медь 99,99% покрытая слоем олова.
  3. Внешняя трёхслойная экранирующая оболочка имеет уникальный способ соединения с замыкающим перекрытием, которое обеспечивает электрический контакт алюминиевого покрытия. Таким образом, создаётся цельная экранирующая трубка из ламинированной фольги.
  4. Кабеля, DUOBOND® PLUS, создаются с экранировкой, которые полностью соответствуют стандартам RG 6, RG 11 и RG 59. Это значительно упрощает работу операторов при монтаже, используются те же технологические приёмы, инструменты и разъёмы как в работе с другими кабелями этих стандартов.

Основные параметры кабелей DUOBOND® PLUS

Параметры RG 59 RG 6 (PRG 11)
Волновое R, в Ом 75 75 75
Емкость, в пФ/м 55 56 55
Эффект экранировки, в дБ >85 >85 >90
Ø центрального провода, в мм 0.8 1 1.55
Ø диэлектрика, в мм 3.66 4.75 7.25
Тип фольги Al/Pe/Al Cu Cu
Плотность оплетки, в % 50 50 50
Ø внешнего проводника, в мм 4.2 5.25 7.9
Ø оболочки, в мм 6 6.9 10.1
Минимум радиуса загиба, в мм 35 35 100
Тактовая частота передаваемых сигналов в МГц затухания сигналов в дБ/100м
5 1.8 1.7 0.9
50 4 4.5 2.7
100 5.6 6.4 3.9
200 7.4 9.1 5.7
300 12.6 11 6.9
400 16.2 13.2 8.2
800 23.2 19.2 12
1350 30.7 25.6 16.1
1750 35.3 29.6 18.7
2400 41.9 35.5 22.5

Отечественные производители производят коаксиальные кабели с индивидуальной маркировкой, но с соблюдением международных стандартов.

Кабель РК-75 и РК-50

Экранирующая сетка этих кабелей выполнена из тонкой мягкой медной проволоки плотность, которой 90%. Бывают комбинированные варианты, лавсановое алюминиевое покрытие обёрнуто сеткой из луженой медной проволоки с плотностью 50%. Комбинированный экран обеспечивает большую помехозащищенность.

Изоляция центрального провода состоит из вспененного азотом полиэтилена, это обеспечивает малый коэффициент затухания передаваемого сигнала. Центральный стержень выполнен из цельной отожженной медной проволоки или из тонкой многожильной структуры. Это придаёт большую гибкость проводу и лучшую проводимость для электрических сигналов. Структура коаксиального кабеля РК-75 одинакова со РК-50, различие в диаметре отдельных элементов и волновом сопротивлении. Оно определяет их назначение и область применения:

  • РК-75 чаще применяется в магистральных компьютерных сетях между локальными ветвями большой сети;
  • РК-50 имеет большую область применения, его используют на радиопередающих и радиоприёмных устройствах, для соединений плат различного назначения в отдельных блоках, передачи видеосигналов, в локальных компьютерных сетях.

Для эксплуатации кабеля снаружи помещений используются марки с внешней оболочкой из светостабилизирующего полиэтилена, для прокладки внутри зданий применяют кабели с оболочкой из пластика ПВХ.

Технические характеристики РК кабелей

Марка кабеля Внутренняя жила Волновое сопротивление W, Ом Затухание, дБ/м на частоте Диаметр D, мм
10 МГц 100 МГц
РК-50-2-11 (РК-119) Однопроволочная 50±2 0.05 0.18 4,0±0,3
РК-50-2-13 (РК-19) " 50±2 0.05 0.18 4,0±0,3
РК-50-3-11 (РК-159) " 50±2 0.04 0.13 5,3±0,3
РК-50-3-13 (РК-55) " 50±2 0.03 0.13 5,0±0,3
РК-50-4-11 (РК-129) " 50±2 0.03 0.1 9,6±0,6
РК-50-4-13 (РК-29) " 50±2 0.03 0.1 9,6±0,6
РК-50-7-11 (РК-147) Многопроволочная 50±2 0.02 0.08 10,3±0,6
РК-50-7-15 (РК-47) " 50±2 0.02 0.08 10,3±0,6
РК-50-7-12 (РК-128) " 50±2 0.02 0.09 11,2±0,7
РК-50-7-16 (РК-28) " 50±2 0.02 0.09 11,2±0,7
РК-50-11-11 (РК-148) " 50±2 0.018 0.06 14,0±0,8
РК-50-11-13 (РК-48) " 50±2 0.018 0.06 14,0±0,8
РК-75-4-11 (РК-101) Однопроволочная 50±2 0.032 0.1 7,3±0,4
РК-75-4-15 (РК-1) " 50±2 0.032 0.1 7,3±0,4
Примечание: Таблица содержит данные, приводимые заводами-изготовителями. Для оценки затухания на частоте 27 МГц может быть использована линейная интерполяция.

Комбинированный кабель КВК-В(П)-2

Особенность такой марки заключается в том, что к обычному коаксиальному кабелю между экраном и внешней изолирующей оболочкой добавлены два медных изолированных провода. Дополнительные провода многожильные сечением 0,5 для управления опциями системы и 0,75 мм/кв, для питания. ТВ сигнал передаётся по коаксиальной составляющей кабеля, а управление или питание камерой осуществляется по дополнительным проводам.

Общий вид комбинированного кабеля КВК-В(П)-2

Такой кабель обеспечивает качественную передачу цветного и чёрно-белого видеосигнала, на расстояние до 450 м.

Конструкции и технические параметры комбинированных кабелей

Маркировка отечественных кабелей РК

Основой маркировки является последовательность букв и чисел:

  • первое число 50 или 75 – величина волнового сопротивления Ом;
  • второе число – Ø изоляции центральной жилы;
  • в третьем числе, первая цифра – это материал изоляции с категорией теплостойкости, вторая и третья цифры определяют номер разработки.

Пример расшифровки РК 75-4,9-322А:

  • Р – радиочастотный;
  • К – коаксиальный кабель;
  • число 75 – волновое сопротивление в Ом/м;
  • 4 или 9 – Ø по внешней изоляции;
  • 3 — полувоздушная, вспененная изоляция с теплостойкостью 1250 С;
  • число 22 – номер производственной разработки;
  • последняя в группе символов буква А, обозначает основную категорию назначения «Антенный».

В зависимости от задачи и спроса производители делают много разных марок коаксиальных кабелей. Для систем видеонаблюдения и домофонов широко распространены комбинированные модели кабелей.

Особенности монтажа

Каждый описанный коаксиальный кабель обладает хорошей гибкостью.

Радиус поворота при прокладке не должен превышать 12 кратной величины радиуса оболочки кабеля. Перегибы могут со временем привести к продавливанию центральной жилой диэлектрического слоя и замыканию на экран. Не желательно подвешивать кабель на длительное время, под собственным весом на расстоянии более 15 м, это приводит к растяжению и обрыву центральной жилы. Большое значение имеет правильная разделка концов кабеля для присоединения разъёмов.

Последовательность и описание разделки кабеля для крепления разъёмов

Оболочка кабеля рассчитана для защиты его от влаги и внешних повреждений при эксплуатации в помещениях и на поверхности. Не прокладывайте кабель под водой или под землёй. Капиллярное просачивание воды разрушит экранирующую оболочку и центральный стержень.

Допускается эксплуатация на поверхности в дождливую погоду, но в местах соединения рекомендуется использовать силиконовые герметики, в крайнем случае, изоленту и пластилин. Существуют специальные влагоустойчивые разъёмы, модели SO-239 или PL-259, PL-258.

Последовательность расположения соединительных разъёмов PL-259 и PL-258

Соединения выполнены пайкой, изменяют величину волнового сопротивления, являются источником отражённых волн, что приводит к искажению сигнала. Используйте промышленные соединительные разъёмы.

Волновое сопротивление

Работая с электронным оборудованием, сигналы которого передаются по коаксиальному кабелю необходимо понимать, что волновое сопротивление невозможно измерить по центральной жиле обычным омметром. Оно рассчитывается исходя из диаметра центрального провода и диаметра экранирующей сетки:

  • Rw = 91lg (dD);
  • Rw – волновое сопротивление в Ом;
  • D – Ø внутреннего диэлектрического слоя в мм;
  • d – Ø внутреннего центрального стержня в мм.

Существуют рассчитанные графики зависимости волнового сопротивления от диаметров диэлектрического слоя и центральной жилы.

График зависимости волнового сопротивления от отношения диаметров диэлектрического слоя и центрального провода

По вертикальной оси отмечаем величину отношения Dd, по горизонтали измеряется величина Rw (волновое сопротивление). Из графика видна прямо пропорциональная зависимость, с увеличением отношения увеличивается сопротивление. Таким образом, делая замеры диаметров и вычисления, по графику можно самостоятельно определить Rw.

Выбор кабеля. Видео

Как правильно выбрать кабель для ТВ, рассказывает это видео.

Используя коаксиальный кабель при монтаже радиоэлектронного оборудования, рекомендуется руководствоваться инструкциями по монтажу, где обычно указывается маркировка. Применяя указанные марки кабелей современные инструменты, разъёмы и другие комплектующие несложно выполнить монтаж своими силами.

Коаксиальный кабель - это электрический кабель, состоящий из центрального провода и металлической оплетки, между собой разделенный слоем диэлектрика (внутренней изоляции), а также помещенных в общую внешнюю оболочку.

Для расчёта сопротивления проводника вы можете воспользоваться калькулятором расчета сопротивления проводника .

Еще совсем недавно был очень распространенным, связано это с тем, что благодаря металлической оплетке, он обладает высокой помехозащищенностью, также более высокими допустимыми скоростями передачи данных (до 500 Мбит/с), чем в случае витой пары и большими допустимыми расстояниями передачи (до 1 км и выше). При несанкционированном прослушивании сети, подключиться к нему механически сложнее и он также дает волне меньше электромагнитных излучений. Однако выполнить ремонт и монтаж коаксиального кабеля значительно сложнее, а его стоимость выше (в сравнении с кабелем на основе витых пар, он дороже примерно в 1,5-3 раза). Установка разъемов на концах кабеля также труднее, поэтому он сейчас и используется реже, чем витая пара.

С топологией типа "шина" в компьютерных локальных сетях, находит основное применение коаксиальный кабель . Обязательно нужно устанавливать терминаторы на концах кабеля, чтобы предотвратить внутренние отражения сигнала, причем заземлен должен быть ТОЛЬКО ОДИН из терминаторов. Металлическая оплетка без заземления не выполняет защиту сети от внешних электромагнитных помех и не снижает излучение информации, передаваемой по сети во внешнюю среду. Если произвести заземление оплетки в двух точках или более, то может из строя выйти не только сетевое оборудование, но также и компьютеры. Требуется обязательно согласовать терминаторы с кабелем, то есть должно быть равно их сопротивление и волновое сопротивление кабеля . Если например, будет использоваться 50-омный кабель, то тогда только 50-омные терминаторы подходят для него.

Коаксиальный кабель реже применяется в сетях с топологией "звезда" или "пассивная звезда" (в сети Arcnet, например). Проблема согласования в этом случае значительно упрощается, на свободных концах уже не требуется внешних терминаторов.

В сопроводительной документации указывается волновое сопротивление кабеля. Чаще всего применяются в локальных сетях 50-омные (например, RG-58 или RG-11) и 93-омные кабели (к примеру, RG-62), в локальных сетях не применяют используемые в телевизионной технике 75-омные кабели. Существует значительно меньше марок коаксиального кабеля , чем кабелей на основе витых пар, он уже не считается перспективным.

Типы коаксиального кабеля.

  • Тонкий кабель, более гибкий и имеет диаметр около 0,5 см.
  • Толстый кабель, более жесткий, он имеет диаметр около 1 см и собой представляет классический вариант коаксиального кабеля , который почти полностью уже вытеснен современным тонким кабелем.

Тонкий кабель применяется для передачи на более маленькие расстояния, чем толстый, из-за того, что сигнал в нем затухает сильнее. Зато гораздо удобнее работать с тонким кабелем, к каждому из компьютеров его можно оперативно проложить, толстому кабелю потребуется жесткая фиксация на стене помещения. При подключении к тонкому кабелю не потребуется дополнительное оборудование и выполнить его значительно проще (при помощи разъемов BNC байонетного типа), а при подключении к толстому кабелю, необходимо использование специальных достаточно дорогих устройств, которые прокалывают его оболочки, также устанавливают контакт с центральной жилой и экраном. По сравнению с тонким, толстый кабель дороже примерно в 2 раза, поэтому гораздо чаще применяется именно тонкий кабель.

Важным параметром коаксиального кабеля , как и в случае витых пар, является тип его внешней оболочки. В данном случае, точно так же применяются как non-plenum (PVC), так и plenum кабели. Тефлоновый кабель, конечно дороже, чем поливинилхлоридный, тип оболочки кабеля обычно можно отличить по ее окраске (желты цвет фирма Belden использует для кабеля PVC , а оранжевый - для тефлонового).

В коаксиальном кабеле типичные величины задержки составляют для тонкого кабеля около 5 нс/м и около 4,5 нс/м - для толстого. Еще существуют коаксиальные кабели с двойным экраном (один экран располагается внутри другого и от него отделен дополнительным слоем изоляции), у таких кабелей лучшая помехозащищенность, а также защита от прослушки, но они стоят немного дороже, чем обычные.

Считается, что сейчас коаксиальный кабель устарел и его в большинстве случаев может вполне заменить витая пара или же оптоволоконный кабель. В новых стандартах для кабельных систем, его в перечень кабелей уже не включают.

Похожие публикации