Классификация систем электросвязи по назначению (видам передаваемых сообщений) и виду среды распространения сигналов. Системы связи

За последнее десятилетие уровень развития территориаль­ных систем связи значительно определил любую другую область телекоммуникаций, ощутимо изменив стиль всей нашей жизни.

Средства связи - это комплект аппаратуры, обеспечиваю­щий взаимное соединение и передачу информации между або­нентами. Средства связи могут быть различны между собой. Виды связи в значительной степени зависят от того, как и где расположены элементы системы, которую они обслуживают.

Существуют системы, которые расположены на некоторой ограниченной территории (как правило, в одном помещении или нескольких помещениях, расположенных недалеко друг от дру­га), для обслуживания их используются локальные средства свя­зи.Они создаются специально для каждого случая и выполняют­ся так, чтобы технически обеспечить взаимодействие элементов системы. Существуют системы, элементы которой расположе­ны на значительных расстояниях. К ним относятся все системы связи, традиционно используемые в быту и на производствах. В таких случаях применяются каналы связи, использующиеся на данной территории. Такие виды связи принято считать террито­риальными, предназначенными для определенных территорий, или глобальными - для межгосударственных контактов.

Современные территориальные системы связи можно разде­лить на следующие группы:

Телеграф;

Телефонная связь;

Радиосвязь различных видов;

Индивидуальные соединительные линии связи. Индивидуальные линии создаются специально для систем, используемых на данной территории или в каком-либо помеще­нии, но технически они выполняются как разновидность одного из перечисленных каналов территориальной или локальной свя­зи.

Для оценки возможностей передачи информации рассмотрим конкретно каждый из видов связи.

8.2. Локальная система связи

Данная система связи выполняется как сеть, которая соеди­няет между собой специально подготовленное оборудование. Та­кая система связи способна передавать непосредственно ту ин­формацию, которая создается всей аппаратурой, сопряженной с ней. Простейшая сеть из двух компьютеров может быть органи­зована путем прямого соединения между собой установленных в этих компьютерах адаптеров. Расстояние между компьютера­ми может достигать 300-800 м. Для объединения компьютеров в вычислительную сеть используют технологию "разветвленная звезда".

Для создания более сложной сети применяют пассивные и ак­тивные разветвители, которые соединяются между собой в раз­личных сочетаниях.

Расстояние от пассивного разветвителя до компьютера или активного разветвителя - до 60 м. Если пассивные разветвите­ли выполняют только функции разветвления соединений сети, то активные разветвители содержат усилители передаваемого сигнала. Расстояния от компьютера до активного разветвителя или от одного активного разветвителя до другого может дости­гать 600-800 м.

Всего в одной локальной сети может работать до 255 ком­пьютеров. С учетом возможности последовательного соединения до 10 активных разветвителей протяженность такой цепочки мо­жет составлять до 6-8 км (рис. 50).

В тех случаях, когда используются территориальные виды связи, прямая передача сведений, создаваемых вычислительны­ми системами, невозможна, так как такие системы связи по сво­им техническим характеристикам не способны передавать ин­формацию с компьютера.

Для сопряжения компьютеров с такой сетью применяется следующая специальная аппаратура:

1. Модем - это устройство, позволяющее компьютеру выхо­дить на связь с другим компьютером посредством телефонных линий, т. е. модем может модулировать и демодулировать пе­редаваемое сообщение. При пользовании модемом возможен са­мый быстрый способ принять документальный материал с одно­го компьютера на другой без его распечатки. Пересылка файла по модему возможна в течение нескольких минут. При его рас­печатке пересылка его займет значительно больше времени.

2. Факс-модем - это устройство, позволяющее принимать факсимильные сообщения с выводом их на экран компьютера или с печатью на принтере и передавать документы, подгото­вленные на компьютере без их распечатки, а также использовать другие возможности телефаксов.

Рис. 50. Пример организации вычислительной сети

По своему характеру сообщения могут быть дискретно-значными (или дискретными) и непрерывнозначными (или непрерывными).

Дискретно-значными называются сообщения, принимающие конечное или счетное число значений . Типичным примером таких сообщений является буквенно-цифровой текст, состоящий из букв, цифр и знаков препинания.

Если множество сообщений является континуальным, то такие сообщения называются непрерывными. К подобным сообщениям относятся речь, подвижное изображение и т. д.

Для передачи различных по физической природе сообщений (речь, изображение, цифровые данные) по радиоканалам необходимо их преобразовать в электрические колебания, называемые первичными сигналами. Между сообщением и сигналом должно быть однозначное соответствие, что обеспечивает возможность получить в пункте приема

переданное сообщение. Например, звуковое давление при передаче речевых сообщений преобразуется микрофоном в электрическое напряжение.

Электрические сигналы, являющиеся аналогами непрерывнозначных сообщений называются аналоговыми. Первичные электрические сигналы, соответствующие дискретно-значным сообщениям, называют цифровыми. Процесс преобразования дискретно-значных сообщений в цифровые сигналы называется кодированием. При кодировании каждому сообщению из ансамбля ставится в однозначное соответствие кодовая комбинация единичных элементов цифрового сигнала, которую называют первичным кодом . В качестве единичных элементов кодовых комбинаций обычно используются электрические импульсы, которые имеют вполне определенные значения амплитуды - представляющего (информационного) параметра цифрового сигнала. Число различных значений представляющего параметра, используемого для построения кодовых комбинаций, определяет основание кода. В зависимости от значения основания кода т различают двоичные т = 2, троичные т = 3 и, в общем случае, m -ичные коды . В системах передачи цифровых сообщений обычно используют двоичные коды, в которых значения амплитуды единичных импульсов принято отождествлять с символами 1 и 0. Символы элементов кодовых комбинаций 1 и 0 называют битами. Применение двоичных кодов позволяет использовать

в аппаратуре связи стандартные элементы цифровой техники. Аналоговые сигналы можно преобразовать в импульсные и цифровые сигналы. Преобразование аналогового сигнала в импульсный достигается его дискретизацией по времени в соответствии с теоремой отсчетов. Преобразование аналогового сигнала в цифровой достигается его дискретизацией по времени и квантованием по уровню. Уровни квантованных отсчетов могут быть преобразованы в кодовые комбинации цифрового сигнала.


Для передачи сообщения в тракте передачи первичный сигнал с помощью модуляции или манипуляции преобразуется в радиосигнал.

Модуляцией называется процесс изменения параметров радиочастотного колебания в соответствии с изменением информационного параметра первичного сигнала (сообщения).

Немодулированный гармонический сигнал называется несущей. Энергия первичных сигналов сосредоточена, в основном, в низкочастотной области, поэтому спектры первичных сигналов переносятся в область высоких частот путем модуляции в передатчике высокочастотной несущей (переносчика) первичным сигналом. Средняя частота несущей значительно превышает ширину спектра сообщения.

В системах радиосвязи передаваемым сообщением модулируется один или совокупность параметров высокочастотного переносчика. Изменяемые при модуляции параметры несущей называют информативными параметрами. Информативный параметр высокочастотной несущей определяет название вида модуляции. Число возможных видов модуляции при заданном виде переносчика определяется числом его параметров.

В качестве переносчика используются гармонические колебания высокой частоты, последовательности импульсов, сложные составные последовательности и т. д.

В одноканальных системах радиосвязи чаще всего осуществляется непосредственная модуляция гармонической несущей передаваемым сообщением . Сигнал в таких системах имеет одну ступень модуляции. При этом возможны три основных вида модуляции гармонической несущей: амплитудная (АМ), частотная (ЧМ) и фазовая (ФМ). Разновидностями амплитудной модуляции являются двухполосная модуляция с подавленной несущей (ДМ) и однополосная модуляция (ОМ).

Частотную и фазовую модуляции обычно рассматривают как две разновидности угловой модуляции.

Модуляцию радиочастотного сигнала первичным импульсным сигналом (последовательностью импульсов) называютимпульсной модуляцией. При использовании в качестве переносчика периодической последовательности импульсов определенной формы выделяют четыре основных вида импульсной модуляции: амплитудно-импульсную, широтно-импульсную, фазоимпульсную и частотно-импульсную. При импульсной модуляции в передатчиках систем радиосвязи необходима вторая ступень, в которой осуществляется модуляция высокочастотного колебания последовательностью импульсов. В результате получается целый ряд двухступенчатых видов модуляции: амплитудно-импульсная-амплитудная модуляция, фазоимпульсная-амплитудная модуляция и т. д.

В многоканальных системах передаваемым сообщением модулируется промежуточный переносчик - поднесущая, которой в свою очередь модулируется несущая. В этом случае сигнал формируется с использованием двух ступеней модуляции: первая определяется способом модуляции поднесущей, а вторая - способом модуляции несущей. В системах с частотным и фазовым разделением каналов в качестве поднесущей используется гармоническое колебание, в системах с временным разделением - последовательность импульсов, в системах с кодовым разделением каналов - кодированная последовательность импульсов.

Если первичные сигналы непрерывных сообщений представлены в

аналоговом виде, то они непосредственно подаются на модулятор. При цифровом представлении непрерывных сообщений совокупность операций кодирования и модуляции, аналогичных таким же операциям при передаче дискретных сообщений, называетсяимпульсно-кодовой модуляцией (ИКМ).

В процессе модуляции спектр первичного сигнала переносится в заданную частотную область, что позволяет в каждом диапазоне частот, выделенных для радиосвязи, упорядочение разместить спектры сигналов различных систем радиосвязи.

Модуляцию радиочастотного колебания первичным цифровым сигналом называютманипуляцией.

Таким образом, на вход канала связи передаваемое сообщение может поступать в виде аналогового, импульсного или цифрового первичного сигнала. В передающем устройстве с помощью модуляции или манипуляции первичный сигнал преобразуется в радиосигнал, используемый для передачи сообщения по линии связи. Классификация сообщений и сигналов приведена на рис. 2.2.

По виду радиосигналов все системы радиосвязи делятся на три группы: системы передачи аналоговых сигналов (аналоговые системы радиосвязи); системы передачи цифровых сигналов (цифровые системы радиосвязи); системы передачи импульсных сигналов (импульсные системы радиосвязи). Авиационные радиостанции обеспечивают возможность передачи и приема нескольких видов сообщений: речевых, телеграфных и различных данных.

Всякое сообщение является некоторой совокупностью сведений о состоянии какой-либо материальной системы, которые передаются человеком (или устройством), наблюдающим эту систему, другому человеку (или устройству), обычно не имеющему возможности получить эти сведения из непосредственных наблюдений. Эта материальная система, вместе с наблюдателем, представляет собой источник сообщения. Для того чтобы сообщение было передано получателю, необходимо воспользоваться каким-либо физическим процессом. Изменяющаяся физическая величина (например, ток в проводе, электромагнитное поле, звуковые волны и т. п.), отображающая сообщение, называется сигналом. Совокупность средств, предназначенных для передачи сигнала, называется каналом связи. Здесь под «средством» можно понимать как устройство, так и физическую среду, в которой распространяется сигнал. Сигнал принимается получателем. Зная закон, связывающий сообщение и сигнал, получатель может выявить содержащиеся в сообщении сведения. Для получателя сообщения сигнал заранее не известен, и поэтому он является случайным процессом.

Помимо передаваемого сигнала в канале всегда присутствуют другие случайные процессы различного происхождения, называемые помехами или шумами. Наличие помех вызывает принципиальную неоднозначность в восстановлении сообщения.

Канал связи вместе с источником сообщения и его получателем при заданных методах преобразования сообщения в сигнал и восстановления сообщения по принятому сигналу называется системой связи.

Иногда канал используется для передачи сообщений от нескольких источников нескольким получателям. Такой канал называется уплотненным и будет рассмотрен в гл. 9.

Рис. 1.1. Схема системы связи.

На рис. 1.1 представлена в самом общем виде схема системы связи. Здесь под передающим устройством понимается вся аппаратура, осуществляющая преобразование сообщения в сигнал, а под приемным устройством - аппаратура, восстанавливающая сообщение. В состав канала может также входить аппаратура, например ретрансляционные усилители.

Рис. 1.2. К определению канала.

Заметим, что понятие «канал» не является строго определенным. Пусть, например, сигнал, передаваемый из точки в точку (рис. 1.2), проходит последовательно через некоторые звенья которые могут представлять собой, например, усилители, отрезки кабеля, среду, в которой распространяются электромагнитные или акустические колебания, и т. д. Можно всю совокупность этих звеньев называть каналом. По можно считать каналом часть звеньев, например от до , отнеся звенья и к передающему устройству, а звено - к приемному. В общей теории связи удобно называть каналом любую часть системы связи, которую по условиям решаемой задачи невозможно или нежелательно изменять. В этом смысле мы и будем понимать термин «канал».

С математической точки зрения задать канал - значит указать, какие сигналы можно подавать на его вход и каково распределение вероятностей сигнала на его выходе при известном сигнале на входе. Общей задачей теории связи является нахождение таких методов преобразования сообщения в сигналы данного канала и обратного преобразования принятого сигнала в сообщение, при которых обеспечивается в некотором смысле наилучшая передача сообщений.

Любая реальная материальная система, входящая в источник сообщений, может иметь непрерывный ряд состояний. Однако сведения, передаваемые о ней, никогда не исчерпывают всех особенностей состояния и могут во многих случаях образовывать дискретное (т. е. конечное или счетное) множество . В этом случае говорят, что источник сообщений является дискретным.

Для того чтобы судить о том, является ли некоторый источник сообщении дискретным или непрерывным, необходимо, выбрав конечный интервал времени длительностью , рассмотреть все множество сообщений , которое данный источник мог бы создавать за это время. Если это множество конечно, то источник сообщений является дискретным, в противном случае он непрерывный.

Разумеется, с ростом увеличивается и число различных сообщений , которое может создать дискретный источник, причем это число для любых источников возрастает приблизительно по экспоненциальному закону . Поэтому если не ограничивать интервал времени , то множество окажется всегда бесконечным. Однако для дискретного источника сообщений оно всегда будет счетным. Это значит, что все мыслимые сообщения можно расположить по некоторому закону в ряд и перенумеровать. Так, например, для источника, создающего сообщения в виде текста, записанного, скажем, русским алфавитом, можно разделить все возможные сообщения на группы, отличающиеся количеством букв в сообщении, расположить эти группы в порядке возрастания числа букв, а внутри каждой группы расположить сообщения в алфавитном порядке и полученную последовательность сообщений пронумеровать. Следовательно, такой источник сообщений является дискретным. Любые два сообщения этого источника, если они не тождественны, отличаются по меньшей мере одной буквой.

Примером непрерывного источника является устройство, передающее результат измерения какой-либо непрерывной величины, скажем атмосферного давления в некотором месте. Если два сообщения такого источника не тождественны, то они могут отличаться друг от друга сколь угодно мало. При этом, как бы мало не отличалось сообщение от сообщения , всегда возможно некоторое сообщение , которое будет отличаться от еще меньше, чем . Такое множество сообщений образует континуум и не может быть пронумеровано.

Однако этот непрерывный источник превратится в дискретный, если наложить на него два ограничения. Во-первых, он должен выдавать сообщение о величине атмосферного давления в определенные, заранее обусловленные, моменты времени. Во-вторых, он должен округлять измеренные значения с определенной точностью (скажем, до 0,01 мм рт. ст.). Легко убедиться, что такой видоизмененный источник оказывается дискретным. В то же время, если указанные моменты времени расположены достаточно часто, а точность приближенного представления достаточно велика, то с точки зрения практики такой дискретный источник нисколько не уступает непрерывным. Тем не менее к дискретизации или квантованию сообщения прибегают далеко не всегда. Так, например, источник, передающий величину звукового давления перед микрофоном (в телефонии или в радиовещании), остается в большинстве случаев непрерывным.

В настоящей работе рассматриваются только сообщения, создаваемые дискретными источниками, которые для краткости называются дискретными сообщениями.

Как дискретные, так и непрерывные источники, можно подразделить на два типа: источники с управляемой скоростью и источники с фиксированной скоростью . В источниках первого типа сообщения хранятся в записанном виде и выдаются по требованиям передающего (кодирующего) устройства. В источниках второго типа сообщения выдаются в некоторые моменты времени, определяемые самим источником и не зависящие от работы передающего устройства.

Примерами источников с управляемой скоростью являются текст телеграммы, подлежащей передаче по телеграфной линии связи, бланк фототелеграммы, перфорированная лента и т. д. Примерами источника с фиксированной скоростью являются многие датчики в телеметрических системах, электронные вычислительные машины, человек, говорящий перед микрофоном, сцена, передаваемая по телевидению, и т. д.

Часто между источником с фиксированной скоростью и передающим устройством включается элемент буферной памяти. Если емкость буферной памяти беспредельно увеличивать, то условия передачи сообщений приближаются к тем, которые имеют место при источниках с управляемой скоростью.


А.П. Сальников

ТЕОРИЯ

ЭЛЕКТРИЧЕСКОЙ СВЯЗИ

Конспект лекций

Часть 1

САНКТ-ПЕТЕРБУРГ

УДК 621.391.1

Сальников А.П. Теория электрической связи: Конспект лекций, часть 1/ СПбГУТ. –СПб., 2002. –93 с.: ил.

Предназначено для студентов, изучающих дисциплину «Теория электрической связи».

Содержит общие сведения о системах связи, описание моделей детерминированных сигналов. Рассмотрены преобразования сигналов в типовых функциональных узлах систем связи (модуляторах и детекторах разных видов, перемножителях и преобразователях частоты сигналов).

Приведены контрольные вопросы по всем разделам для самопроверки их усвоения и рекомендации по проведению сопутствующих экспериментальных исследований в виртуальной учебной лаборатории по курсу ТЭС.

Материал соответствует действующей учебной программе по курсу ТЭС.

Ответственный редактор М.Н. Чесноков

© Сальников А.П., 2002

© Издание Санкт-Петербургского государственного университета

телекоммуникаций им. проф. М.А. Бонч-Бруевича, 2002

Редактор И.И. Щенсняк


ЛР № от.02. Подписано к печати.02

Объем 8,125 уч.-изд. л. Тир. 200 экз. Зак.


РИО СПбГУТ. 191186, СПб., наб. р. Мойки, 61

Общие сведения о системах связи

Информация, сообщения, сигналы

Под информацией понимают совокупность каких-либо сведений о явлениях, объектах и т.п. Сообщения представляют собой материальную форму существования информации и могут иметь различную физическую природу. Сигналами в электрической связи служат процессы (функции времени) электрической природы, посредством которых осуществляется передача сообщений на расстояние. Общее и различное в этих основополагающих понятиях теории связи поясняется таблицей 1.1. В ней также указаны возможные преобразователи сообщений в сигналы, которые называют датчиками сигналов .

Таблица 1.1.

Текстовые сообщения представляют собой последовательности символов из некоторого конечного множества {a i } (языка) с известным объемом алфавита m . Преобразование такого рода сообщений в сигнал может осуществляться, например, клавиатурой ЭВМ путем поочередного кодирования отдельных символов сообщения k -разрядными комбинациями из 0 и 1, которым соответствуют два разных уровня напряжения.

Звуковые сообщения представляют собой изменения давления воздушной среды в заданной точке пространства во времени p (t ). С помощью микрофона они преобразуются в переменный электрический сигнал u (t ), который в определенном смысле является копией сообщения и отличается от него лишь физической размерностью.

Видеосообщения можно рассматривать как распределение яркости на поверхности объекта b (x,y ), неподвижное изображение которого требуется передать на расстояние (фототелеграф), или более сложный процесс b (x,y,t ) (черно-белое телевидение). Характерной особенностью при передаче видеосообщений является необходимость преобразования описывающих их многомерных функций в одномерный сигнал u (t ). Это достигается использованием в датчиках видеосигналов устройств развертки (УР) для поэлементного преобразования яркости отдельных точек объектов в уровень электрического сигнала с помощью фотоэлементов (ФЭ) или иных фотоэлектрических преобразователей.

Классификация сигналов

По относительной ширине спектра сигналы делят на низкочастотные (называемые также НЧ, видео, широкополосные сигналы) и высокочастотные (ВЧ, радио, узкополосные, полосовые сигналы).

Для НЧ сигналов ΔF /F ср> 1, где

ΔF = F max– F min– абсолютная ширина спектра сигнала,

F ср= (F max+ F min)/2 – средняя частота спектра сигнала,

F max– максимальная частота в спектре сигнала,

F min– минимальная частота в спектре сигнала.

Для ВЧ сигналов ΔF /F ср << 1.

Как правило, первичные сигналы на выходе датчиков являются низкочастотными. Полезно помнить диапазоны частот, в которых располагаются спектры типичных сигналов в системах связи и вещания:

1) телефонный – 300 ÷ 3400 Гц (стандартный канал тональной частоты),

2) радиовещательный – от 30–50 Гц до 6–15 кГц,

3) телевизионный – 0 ÷ 6 МГц (для вещательного стандарта разложения изображения, принятого в России).

По своей природе различают сигналы детерминированные и случайные. Детерминированные сигналы считаются известными в каждой точке временной оси. В отличие от них значения случайных (стохастических) сигналов в каждый момент времени являются случайной величиной с той или иной вероятностью. Очевидно, что детерминированные сигналы в силу своей полной определенности не могут нести никакой информации. Их удобно использовать в теории для анализа различных функциональных узлов (ФУ ), а на практике в качестве испытательных сигналов для измерения неизвестных параметров и характеристик отдельных звеньев трактов систем связи.

По форме сигналы можно разделить на четыре вида, приведенные в таблице 1.2.

Таблица 1.2.

Время t
непрерывное дискретное
Значения u (t ) Непрерывные u (t ) аналоговый 1 t u (t ) t
Дискретные u (t ) t u (t ) цифровой 4 t


Сигнал (1 ), непрерывный по времени и состояниям, называют аналоговым . Сигнал (4 ), дискретный по времени и состояниям, – цифровым . Эти сигналы чаще всего используются в различных узлах систем связи. Соответственно различают аналоговые и цифровые ФУ по форме сигналов на их входах и выходах. Возможны преобразования аналогового сигнала в цифровой с помощью аналого-цифрового преобразователя (АЦП) и, наоборот, – с помощью цифро-аналогового преобразователя (ЦАП) . Условные графические обозначения (УГО) этих типовых ФУ приведены на рис. 1.1.

Сигналы можно рассматривать в качестве объектов транспортировки по каналам связи и характеризовать основными параметрами, такими как

- длительность сигнала Т с,

- ширина его спектра F c ,

- динамический диапазон , где

и – максимальная и минимальная

мгновенные мощности сигнала.

Пользуются также более общей характеристикой – объемом сигнала .На интуитивном уровне очевидно, чем больше объем сигнала, тем он информативнее, но тем и выше требования к качеству канала для его передачи.

Классификация систем связи

По виду передаваемых сообщений различают:

1) телеграфию (передача текста),

2) телефонию (передача речи),

3) фототелеграфию (передача неподвижных изображений),

4) телевидение (передача подвижных изображений),

5) телеметрию (передача результатов измерений),

6) телеуправление (передача управляющих команд),

7) передачу данных (в вычислительных системах и АСУ).

По диапазону частот – в соответствии с декадным делением диапазонов электромагнитных волн от мириаметровых (3÷30) кГц до децимиллиметровых (300÷3000) ГГц.

По назначению – вещательные (высококачественная передача речи, музыки, видео от малого числа источников сообщений большому количеству их получателей) и профессиональные (связные), в которых число источников и получателей сообщений одного порядка.

Различают следующие режимы работы СС:

1) симплексный (передача сигналов в одном направлении),

2) дуплексный (одновременная передача сигналов в прямом и обратном направлениях),

3) полудуплексный (поочередная передача сигналов в прямом и обратном направлениях).

Уточним уже использованный нами термин канал связи. Под ним принято понимать часть СС между точками А на передающей и Б на приемной сторонах. В зависимости от выбора этих точек, иначе говоря, по виду сигналов на входе и выходе различают каналы:

1) непрерывные ,

2) дискретные ,

3) дискретно-непрерывные ,

4) непрерывно-дискретные .

Каналы связи можно характеризовать по аналогии с сигналами следующими тремя параметрами:

временем доступа ,

шириной полосы пропускания ,

динамическим диапазоном [дБ],

где – максимально допустимая мощность

сигнала в канале,

– мощность собственных шумов канала.

Обобщенным параметром канала является его емкость

Очевидным необходимым условием согласования сигнала и канала является выполнение неравенства V c < V к.

Менее очевидно то, что это условие является также достаточным и вовсе не обязательно добиваться аналогичного согласования по частным параметрам (длительности, спектру, динамическому диапазону), так как возможен «обмен» ширины спектра сигнала на его длительность или динамический диапазон.

Контрольные вопросы

1. Дайте определения понятиям информация, сообщение сигнал. Какие между ними связи и различия?

2. Приведите примеры сообщений разной физической природы и соответствующих им датчиков сигналов.

3. Каким образом сообщения, описываемые многомерными функциями, преобразуются в сигналы? Приведите примеры.

4. Классифицируйте сигналы по особенностям их формы и спектра.

5. По какому признаку различают НЧ и ВЧ сигналы?

6. По какому критерию различают аналоговые и цифровые сигналы и ФУ?

7. Укажите основные параметры сигналов.

8. Нарисуйте структурные схемы систем связи для:

· передачи дискретных сообщений,

· передачи непрерывных сообщений,

· передачи непрерывных сообщения по цифровым каналам.

9. Укажите назначение следующих ФУ систем связи:

· кодера источника и кодера канала,

· модулятора,

· демодулятора,

· декодера канала и декодера источника.

10. Что общего и различного в задачах, решаемых демодуляторами СПДС и СПНС?

11. Какие системы связи Вам известны:

· по виду передаваемых сообщений,

· по диапазону используемых частот,

· по назначению,

· по режимам работы?

12. Дайте определение термину «канал связи». Какая классификация каналов связи Вам известна?

13. Укажите основные параметры каналов связи.

14. Сформулируйте условия согласования сигналов и каналов связи.

Для закрепления полученных в разделах 1.1 и 1.2. знаний полезно выполнить лабораторную работу № 14 «Знакомство с системами ПДС» (из перечня тем виртуальной учебной лаборатории) в полном объёме. Эта работа носит ознакомительный характер и позволяет наблюдать все основные процессы получения, преобразования и приёма сигналов в системах передачи дискретных сообщений (рис. 1.3). Следует обратить внимание на осциллограммы и спектрограммы сигналов на выходах типовых ФУ (кодера источника при выборе разных типов интерфейса, кодера канала при выборе разных помехоустойчивых кодов, модулятора при разных видах модуляции, демодулятора и декодера), входящих в системы ПДС, и сопоставить с ними свои представления, полученные в ходе изучения раздела.

Рекомендуется по результатам наблюдения сигналов в разных точках тракта СПДС провести их классификацию, определить их основные параметры, а также выделить в СПДС разные типы каналов (непрерывный, дискретный, дискретно-непрерывный и непрерывно-дискретный). Полезно также получение наглядного представления о функции каждого ФУ СПДС.

Для закрепления полученных сведений о различии НЧ и ВЧ сигналов и наполнения их практическим содержанием целесообразно провести исследования в рамках лабораторной работы № 4 «Модулированные сигналы». Выбирая в качестве первичных НЧ сигналы разных форм, обратите внимание не только на различие осциллограмм и спектрограмм первичных (НЧ) и модулированных (ВЧ) сигналов, но и на объединяющие их признаки при использовании разных видов модуляции (рис. 1.4).

При выполнении указанных работ не обязательно строго придерживаться имеющихся в них заданий. Используйте возможности ресурсов ВЛ для проведения исследований по своему усмотрению и желанию.


Пространств

Сигналы – это, прежде всего, процессы, т.е. функции времени x (t ), существующие на ограниченном интервале Т (в теории возможно Т → ∞). Их можно изобразить графически (рис. 2.1) и описывать упорядоченной последовательностью значений в отдельные моменты времени t k

(вектор строка).

Разные сигналы отличаются формой (набором значений x (t k )). Вместо сложной совокупности точек кривой x (t ) в простой области – двумерном пространстве можно ввести в рассмотрение более сложные пространства (пространства сигналов), в которых каждый сигнал изображается простейшим элементом – точкой (вектором).

В математике под пространством понимают множество объектов (любой физической природы), наделенных некоторым общим свойством. Свойства, которыми целесообразно наделять пространства сигналов, должны отражать наиболее существенные свойства реальных сигналов, такие как их длительность, энергия, мощность и т.п.

Метрические пространства

Первое свойство, которым мы наделим пространство сигналов, называют метрикой.

Метрическое пространство – это множество с подходящим образом определенным расстоянием между его элементами. Само это расстояние, как и способ его определения, называют метрикой и обозначают . Метрика должна представлять собой функционал, т.е. отображение любой пары элементов и множества на действительную ось, удовлетворяющее интуитивно понятным требованиям (аксиомам):

1) (равенство при ),

2) ,

3) (аксиома треугольника).

Следует отметить, что метрики можно задать разными способами и в результате для одних и тех же элементов получить разные пространства.

Примеры метрик:

1) ,

2) евклидова метрика,

3) евклидова метрика.

Линейные пространства

Усовершенствуем структуру пространства сигналов, наделив его простыми алгебраическими свойствами, присущими реальным сигналам, которые можно алгебраически складывать и умножать на числа.

Линейным пространствомL над полем F называют множество элементов , называемых векторами, для которых заданы две операции –сложение элементов (векторов) и умножение векторов на элементы из поля F (называемые скалярами ) . Не вдаваясь в математические детали, в дальнейшем, под полем скаляров будем понимать множества вещественных чисел R (случай действительного пространства L ) или комплексных чисел С (случай комплексного пространства L ). Эти операции должны удовлетворять системе аксиом линейного пространства.

1. Замкнутость операций сложения и умножения на скаляр:

2. Свойства сложения:

ассоциативность,

коммутативность.

3. Свойства умножения на скаляр:

Ассоциативность,

дистрибутивность суммы векторов,

дистрибутивность суммы скаляров.

4. существование нулевого вектора.

5. существование проти-

воположного вектора.

Вектор, образованный суммированием нескольких векторов со скалярными коэффициентами

называют линейной комбинацией (многообразием). Легко видеть, что множество всех линейных комбинаций векторов при разных a i (не затрагивая ) также образует линейное пространство, называемое линейной оболочкой для векторов .

Множество векторов называют линейно независимыми , если равенство

возможно лишь при всех a i = 0. Например, на плоскости любые два неколлинеарные вектора (не лежащие на одной прямой) являются линейно независимыми.

Система линейно независимых и ненулевых векторов образует в пространстве L базис , если

.

Этот единственный набор скаляров {a i }, соответствующий конкретному вектору , называют егокоординатами (проекциями ) по базису .

Благодаря введению базиса операции над векторами превращаются в операции над числами (координатами)

Если в линейном пространстве L можно отыскать n линейно независимых векторов, а любые n + 1 векторов зависимы, то n размерность пространства L (dim L = n ).

Нормированные пространства

Следующий наш шаг в совершенствовании структуры пространства сигналов – объединение геометрических (характерных для метрических пространств) и алгебраических (для линейных пространств) свойств путем введения действительного числа, характеризующего «размер» элемента в пространстве. Такое число называют нормой вектора и обозначают .

В качестве нормы можно использовать любое отображение линейного пространства на действительную ось, удовлетворяющее следующим аксиомам:

3) .

Выводы

1. Математическим аппаратом спектрального анализа периодических сигналов являются ряды Фурье.

2. Спектры периодических сигналов дискретные (линейчатые), представляют собой совокупность амплитуд и фаз гармонических колебаний (составляющих) следующих по оси частот через интервалы Δf = f 1 = 1/T.

3. Ряд Фурье является частным случаем обобщенного ряда Фурье при использовании в качестве базиса

или .

Спектры Т-финитных сигналов

Т-финитными называют ограниченные по времени сигналы. По определению они не могут быть периодическими и, следовательно, к ним не применимо разложение в ряды Фурье.

Чтобы получить адекватное описание таких сигналов в частотной области используют следующий прием. На первом этапе от заданного сигнала x (t ), имеющего начало в точке t 1 и конец в точке t 2 переходят к сигналу x п (t ), являющемуся периодическим повторением x (t ) на бесконечной оси времени с периодом . Сигнал x п (t ) можно разложить в ряд Фурье

,

где .

Введём в рассмотрение текущую частоту и спектральную плотность амплитуд .

Тогда .

Исходный сигнал x (t ) можно получить из x п (t ) в результате предельного перехода Т® ¥ .

, , å ® ò , ,

Таким образом, для описания спектра финитного сигнала приходим к известному в математике интегральному преобразованию Фурье:

– прямое,

– обратное.

В данном случае (и в дальнейшем) комплексную функцию записали в виде , как это принято в научно-технической литературе.

Из полученных соотношений следует, что спектр Т-фи- нитного сигнала сплошной. Он представляет собой совокупность бесконечного числа спектральных составляющих с бесконечно малыми амплитудами , непрерывно следующих по оси часты. Вместо этих бесконечно малых амплитуд используют спектральную функцию (спектральную плотность амплитуд)

где – амплитудный спектр,

– фазовый спектр.

Выводы

1. Математическим аппаратом спектрального анализа Т-финитных сигналов является интегральное преобразование Фурье.

2. Спектры Т-финитных сигналов сплошные и описываются непрерывными функциями частоты в виде модуля спектральной плотности амплитуд (амплитудный спектр) и её аргумента (фазовый спектр).

Свойства преобразования Фурье

1. Прямое и обратное преобразование Фурье являются линейными операторами , следовательно, действует принцип суперпозиции. Если , то .

2. Прямое и обратное преобразование Фурье являются взаимно однозначными .

3. Свойство запаздывания .

Если , то

(в данном случае использованы подстановки: ).

4. Спектральная функция δ-функции .

Используя общее выражение спектральной функции и фильтрующее свойство δ-функции, получим

.

5. Спектральная функция комплексного гармонического сигнала .

(2.5)

Используя одно из определений δ-функции

и выполняя в нём взаимную замену t и w (или f ), получим

Классификация систем электросвязи по назначению (видам передаваемых сообщений) и виду среды распространения сигналов

Коммуникация, связь, радиоэлектроника и цифровые приборы

Классификация систем электросвязи весьма разнообразна но в основном определяется видами передаваемых сообщений средой распространения сигналов электросвязи и способами распределения коммутации сообщений в сети рис.2 Классификация систем электросвязи по видам передаваемых сообщений и среды распространения По виду передаваемых сообщений различают следующие системы связи: телефонные передачи речи телеграфные передачи текста факсимильные передачи неподвижных изображений теле и звукового вещания передачи подвижных изображений и...

Классификация систем электросвязи по назначению (видам передаваемых сообщений) и виду среды распространения сигналов.

Классификация систем электросвязи весьма разнообразна, но в основном определяется видами передаваемых сообщений, средой распространения сигналов электросвязи и способами распределения (коммутации) сообщений в сети (рис. 1.2.2).

Рисунок 1.2.2 – Классификация систем электросвязи по видам

передаваемых сообщений и среды распространения

По виду передаваемых сообщений различают следующие системы связи: телефонные (передачи речи), телеграфные (передачи текста), факсимильные (передачи неподвижных изображений), теле и звукового вещания (передачи подвижных изображений и звука), телеизмерения, телеуправления и передачи данных.

По назначению телефонные и телевизионные системы делятся на вещательные, отличающиеся высокой степенью художественности воспроизведения сообщений, и профессиональные, имеющие специальное применение (служебная связь, промышленное телевидение и т.п.). В системе телеизмерения измеряемая физическая величина (температура, давление, скорость и т.п.) с помощью датчиков преобразуется в первичный электрический сигнал, поступающий в передатчик. На приёмном конце переданную физическую величину или её изменения выделяют из сигнала и наблюдают или регистрируют с помощью записывающих приборов. В системе телеуправления осуществляется передача команд для автоматического выполнения определённых действий.

Системы передачи данных , обеспечивающие обмен информацией между вычислительными средствами и объектами автоматизированных систем управления, отличаются от телеграфных более высокими скоростями и верностью передачи информации.

В зависимости от среды распространения сигналов различают системы (линии) проводной связи (воздушные, кабельные, волоконно-оптические и др.) и радиосвязи. Кабельные системы связи являются основой магистральных сетей дальней связи, по ним осуществляется передача сигналов в диапазоне частот от десятков кГц до сотен МГц. Весьма перспективными являются волоконно-оптические линии связи (ВОЛС). Они позволяют в диапазоне от 600 до 900 ГГц (0,5...0,3 мкм) обеспечить очень большую пропускную способность (сотни телевизионных или сотни тысяч телефонных каналов). Наряду с проводными линиями связи широко используются радиолинии различных диапазонов (от сотен кГц до десятков ГГц). Эти линии более экономичны и незаменимы для связи с подвижными объектами. Наибольшее распространение для многоканальной радиосвязи получили радиорелейные линии (РРЛ) метрового, дециметрового и сантиметрового диапазонов на частотах от 60 МГц до 40 ГГц. Разновидностью РРЛ являются тропосферные линии с использованием отражений от неоднородностей тропосферы. Всё большее применение находят спутниковые линии связи (СЛС) – РРЛ с ретранслятором на ИСЗ. Для этих линий (систем) связи отведены диапазоны частот от 4 до 6 и от 11 до 27,5 ГГц. Большая дальность при одном ретрансляторе на спутнике, гибкость и возможность организации глобальной связи – важные преимущества СЛС.

Диапазоны частот электромагнитных колебаний, используемые в системах радиосвязи, представлены в табл. 1.2.1.

Таблица 1.2.1 – Диапазон частот электромагнитных колебаний,

используемых в системах радиосвязи

Системы связи могут работать в одном из трёх режимов:

Симплексном – передача сообщений осуществляется в одном направлении от источника к получателю;

Дуплексном – обеспечивается возможность одновременной передачи сообщений в прямом и обратном направлении;

Полудуплексном – обмен сообщений осуществляется поочередно.


А также другие работы, которые могут Вас заинтересовать

51285. Изучение явления интерференции света с помощью бипризмы Френеля 82 KB
Цель работы: Изучение поляризованного света явлений вращения плоскости поляризации в оптически активных растворах и магнитных полях определение постоянной вращения постоянной Верде и концентрация оптически активных растворов. Приборы и принадлежности: круговые поляриметры трубки с оптически активными соленоид выпрямитель миллиметровка Определение постоянной вращения сахарных растворов.5 По формуле вычислим концентрацию: Вывод: в ходе работы изучили: излучение поляризованного света явление вращения плоскости поляризации в...
51286. исследование дисперсии стеклянной призмы 74 KB
Цель работы: Наблюдение линейных спектров испускания определение показателя преломления оптического стекла для различных длин волн и построение кривой дисперсии этого стекла определение дисперсионных характеристик призмы. Определение зависимости Преломляющий угол...
51287. Изучение явления интерференции света в тонких плёнках на примере колец Ньютона 131.5 KB
Цель работы: изучение явления интерференции света определение радиуса кривизны линзы с помощью колец Ньютона определение длины волны пропускания светофильтров
51289. 42.5 KB
Цель работы: изучение методов получения когерентных источников света искусственным делением фронта световой волны бипризма Френеля; изучение явления интерференции света; определение длины волны источника света и расстояний между когерентными источниками света. Приборы и принадлежности: источник света светофильтры раздвижная щель бипризма Френеля микроскоп с отсчет ной шкалой оптические рейтеры.Определение длины волны источника света. Вывод: изучили методы получения когерентных источников света искусственным делением...
51290. Иучение явления интерференции света с помощью бипризмы Френеля 52.5 KB
Цель работы: Изучение методов получения когерентных источников света искусственным делением фронта световой волны бипризма Френеля; изучение явления интерференции света. Приборы и принадлежности: источник света светофильтры раздвижная...
51291. Дифракция света в лазерных лучах 55 KB
Газовый лазер непрерывного действия ЛГ-75 или ЛПМ-11, рейтер с дифракционными объектами (раздвижная щель, тонкая нить, две взаимно перпендикулярные нити), экран с отсчетными линейками.
51292. Финансы и финансовая деятельность 178.88 KB
Финансы - это экономические денежные отношения по формированию, распределению и использованию фондов денежных средств государства, его территориальных подразделений, а также предприятий, организаций и учреждений, необходимых для обеспечения расширенного воспроизводства и социальных нужд, в процессе осуществления которых происходит распределение и перераспределение общественного продукта и контроль за удовлетворением потребностей общества.
Похожие публикации