Межсетевые экраны транспортного уровня. Как работает межсетевой экран

Раздел 5. Вопрос 8. (53) Межсетевые экраны.

Межсетевой экран (МЭ) - это локальное (однокомпонентное) или функционально - распределенное программное (программно-аппаратное) средство (комплекс), реализующее контроль за информацией, поступающей в АС и/или выходящей из АС. МЭ обеспечивает защиту АС посредством фильтрации информации, т.е. ее анализа по совокупности критериев и принятия решения о ее распространении в (из) АС на основе заданных правил, проводя таким образом разграничение доступа субъектов из одной АС к объектам другой АС. Каждое правило запрещает или разрешает передачу информации определенного вида между субъектами и объектами. Как следствие, субъекты из одной АС получают доступ только к разрешенным информационным объектам из другой АС. Интерпретация набора правил выполняется последовательностью фильтров, которые разрешают или запрещают передачу данных (пакетов) на следующий фильтр или уровень протокола.

(определение из РД МЭ)

Межсетевые экраны - комплексное программное или аппаратное обеспечение, позволяющее на должном уровне безопасности контролировать количество и качество сетевых пакетов, проходящих через него. Межсетевой экран осуществляет анализ сетевого трафика, исходя из определенного набора правил, в соответствии с которыми осуществляется фильтрация всех данных.

(определение упрощенное для запоминания, Хабр)

Таким образом, основная задача МЭ (файервола, сетевого экрана, брандмауэра) - защита автономных узлов или общих компьютерных сетей от несанкционированного постороннего доступа, который может использовать данные в своих целях либо нанести непоправимый вред владельцу сети. Именно поэтому межсетевые экраны еще называют фильтрами, которые не пропускают не подходящие под прописанные в конфигурации критерии пакеты данных. Фильтрация сетевого трафика может осуществляться на любом уровне модели OSI. В качестве критериев может быть использована информация с разных уровней: номера портов, содержимое поля данных, адрес отправителя/получателя.

Государственные органы контроля информационных технологий определяют межсетевой экран более конкретно — как один из компонентов обширной системы информационной безопасности, включающей в себя ряд дополнительных характеристик для обеспечения ее эффективной работы. Межсетевой экран не является обязательным для приобретения владельцем сети. Не смотря на то, что он в полной мере отвечает за сохранность конфиденциальной информации, в настоящий момент подобная система защиты в РФ не распространена на должном уровне. В идеале она должна быть внедрена в каждую внутреннюю сеть, чтобы круглосуточно контролировать входящие/исходящие потоки информации. Система мониторинга защиты информации в некоторой степени заменяет в настоящий момент дополнительные средства защиты сети, однако этого не достаточно для определения личной системы безопасности как совокупности аппаратных обеспечений высокого уровня.

(Хабр)

Для любопытных хорошо написано о проблемах сертификации http://habrahabr.ru/post/246193/

Межсетевой экран (МЭ) выполняет функции разграничения информационных потоков на границе защищаемой автоматизированной системы. Это позволяет:

Повысить безопасность объектов внутренней среды за счёт игнорирования неавторизованных запросов из внешней среды;

Контролировать информационные потоки во внешнюю среду;

Обеспечить регистрацию процессов информационного обмена.

Контроль информационных потоков производится посредством фильтрации информации , т.е. анализа её по совокупности критериев и принятия решения о распространении в АС или из АС.

В зависимости от принципов функционирования, выделяют несколько классов межсетевых экранов . Основным классификационным признаком является уровень модели ISO/OSI, на котором функционирует МЭ.

1. Фильтры пакетов.

Простейший класс межсетевых экранов, работающих на сетевом и транспортном уровнях модели ISO/OSI. Фильтрация пакетов обычно осуществляется по следующим критериям:

IP-адрес источника;

IP-адрес получателя;

Порт источника;

Порт получателя;

Специфические параметры заголовков сетевых пакетов.

Фильтрация реализуется путём сравнения перечисленных параметров заголовков сетевых пакетов с базой правил фильтрации.

Межсетевые экраны с пакетной фильтрацией могут также быть программными пакетами, базирующимися на операционных системах общего назначения (таких как Windows NT и Unix) либо на аппаратных платформах межсетевых экранов. Межсетевой экран имеет несколько интерфейсов, по одному на каждую из сетей, к которым подключен экран. Аналогично межсетевым экранам прикладного уровня, доставка трафика из одной сети в другую определяется

набором правил политики. Если правило не разрешает явным образом определенный трафик, то соответствующие пакеты будут отклонены или аннулированы межсетевым экраном. Правила политики усиливаются посредством

использования фильтров пакетов. Фильтры изучают пакеты и определяют, является ли трафик разрешенным, согласно

правилам политики и состоянию протокола (проверка с учетом состояния). Если протокол приложения функционирует

через TCP, определить состояние относительно просто, так как TCP сам по себе поддерживает состояния. Это означает,

что когда протокол находится в определенном состоянии, разрешена передача только определенных пакетов.

Рассмотрим в качестве примера последовательность установки соединения. Первый ожидаемый пакет - пакет SYN. Межсетевой экран обнаруживает этот пакет и переводит соединение в состояние SYN. В данном состоянии ожидается один из двух пакетов - либо SYN ACK (опознавание пакета и разрешение соединения) или пакет RST (сброс соединения по причине отказа в соединении получателем). Если в данном соединении появятся другие пакеты, межсетевой экран аннулирует или отклонит их, так как они не подходят для данного состояния соединения, даже если соединение разрешено набором правил. Если протоколом соединения является UDP, межсетевой экран с пакетной фильтрацией не может использовать присущее протоколу состояние, вместо чего отслеживает состояние трафика UDP. Как правило, межсетевой экран принимает внешний пакет UDP и ожидает входящий пакет от получателя, соответствующий исходному пакету по адресу и порту, в течение определенного времени. Если пакет принимается в течение этого отрезка времени, его передача разрешается. В противном случае межсетевой экран определяет, что трафик UDP не является ответом на запрос, и аннулирует его. При использовании межсетевого экрана с пакетной фильтрацией соединения не прерываются на межсетевом экране, а направляются непосредственно к конечной системе. При поступлении пакетов межсетевой экран выясняет, разрешен ли данный пакет и состояние соединения правилами политики. Если это так, пакет передается по своему маршруту. В противном случае пакет отклоняется или аннулируется.

Межсетевые экраны с фильтрацией пакетов не используют модули доступа для каждого

протокола и поэтому могут использоваться с любым протоколом, работающим через IP. Некоторые протоколы требуют распознавания межсетевым экраном выполняемых ими действий. Например, FTP будет использовать одно соединение для начального входа и команд, а другое - для передачи файлов. Соединения, используемые для передачи файлов, устанавливаются как часть соединения FTP, и поэтому межсетевой экран должен уметь считывать трафик и определять порты, которые будут использоваться новым соединением. Если межсетевой экран не поддерживает эту

функцию, передача файлов невозможна. Межсетевые экраны с фильтрацией пакетов имеют возможность поддержки большего объема трафика, т. к. в них отсутствует нагрузка, создаваемая дополнительными процедурами настройки и вычисления, имеющими место в программных модулях доступа. Межсетевые экраны, работающие только посредством фильтрации пакетов, не используют модули доступа, и поэтому трафик передается от клиента непосредственно на сервер. Если сервер будет атакован через открытую службу, разрешенную правилами политики межсетевого экрана,

межсетевой экран никак не отреагирует на атаку. Межсетевые экраны с пакетной фильтрацией также позволяют видеть извне внутреннюю структуру адресации. Внутренние адреса скрывать не требуется, так как соединения не прерываются на межсетевом экране.

2. Шлюзы сеансового уровня

Данные межсетевые экраны работают на сеансовом уровне модели ISO/OSI. В отличие от фильтров пакетов, они могут контролировать допустимость сеанса связи, анализируя параметры протоколов сеансового уровня. Поэтому к шлюзам сеансового уровня относят фильтры, которые невозможно отождествить ни с сетевым, ни с транспортным, ни с прикладным уровнем. Фильтры сеансового уровня имеют несколько разновидностей в зависимости от их функциональных особенностей, но такая классификация носит достаточно условный характер, поскольку их возможности во многом пересекаются. Следует помнить, что в состав межсетевых экранов входят шлюзы сеансового уровня всех или большинства видов.

Контроль битов SYN и ACK. Ряд фильтров позволяет отслеживать биты SYN и ACK в пакетах TCP. Все они призваны бороться с атаками по типу SYN-flooding (см. врезку «Атака SYN-flooding»), но используют различные подходы. Самый простой фильтр запрещает передачу TCP-пакетов с битом SYN, но без бита ACK со стороны общедоступной сети на компьютеры внутренней сети, если последние не были явно объявлены серверами для внешней сети (или хотя бы для определенной группы компьютеров внешней сети). К сожалению, такой фильтр не спасает при атаках SYN-flooding на машины, являющиеся серверами для внешней сети, но расположенные во внутренней сети.

Для этих целей применяют специализированные фильтры с многоступенчатым порядком установления соединений. Например, фильтр SYNDefender Gateway из состава межсетевого экрана FireWall-1 производства Check Point работает следующим образом. Допустим, внешний компьютер Z пытается установить соединение с внутренним сервером A через межсетевой экран МЭ. Процедура установления соединения показана на Рисунке 2. Когда МЭ получает пакет SYN от компьютера Z (этап 1), то этот пакет передается на сервер A (этап 2). В ответ сервер A передает пакет SYN/ACK на компьютер Z, но МЭ его перехватывает (этап 3). Далее МЭ пересылает полученный пакет на компьютер Z, кроме того, МЭ от имени компьютера Z посылает пакет ACK на сервер A (этап 4). За счет быстрого ответа серверу A, выделяемая под установление новых соединений память сервера никогда не окажется переполнена, и атака SYN-flooding не пройдет.

Дальнейшее развитие событий зависит от того, действительно ли компьютер Z инициализировал установление соединения с сервером A. Если это так, то компьютер Z перешлет пакет ACK серверу A, который проходит через МЭ (этап 5a). Сервер A проигнорирует второй пакет ACK. Затем МЭ будет беспрепятственно пропускать пакеты между компьютерами A и Z. Если же МЭ не получит пакета ACK или кончится тайм-аут на установление соединения, то он вышлет в адрес сервера A пакет RST, отменяющий соединение (этап 5б).

Фильтры контроля состояния канала связи.

К фильтрам контроля состояния канала связи нередко относят сетевые фильтры (сетевой уровень) с расширенными возможностями.

Динамическая фильтрация в сетевых фильтрах. В отличие от стандартной статической фильтрации в сетевых фильтрах, динамическая (stateful) фильтрация позволяет вместо нескольких правил фильтрации для каждого канала связи назначать только одно правило. При этом динамический фильтр сам отслеживает последовательность обмена пакетами данных между клиентом и сервером, включая IP-адреса, протокол транспортного уровня, номера портов отправителя и получателя, а иногда и порядковые номера пакетов. Понятно, что такая фильтрация требует дополнительной оперативной памяти. По производительности динамический фильтр несколько уступает статическому фильтру.

Фильтр фрагментированных пакетов. При передаче через сети с различными MTU IP-пакеты могут разбиваться на отдельные фрагменты, причем только первый фрагмент всегда содержит полный заголовок пакета транспортного уровня, включая информацию о программных портах. Обычные сетевые фильтры не в состоянии проверять фрагменты, кроме первого, и пропускают их (при выполнении критериев по IP-адресам и используемому протоколу). За счет этого злоумышленники могут организовать опасные атаки по типу «отказ в обслуживании», преднамеренно генерируя большое количество фрагментов и тем самым блокируя работу компьютера-получателя пакетов. Фильтр фрагментированных пакетов не пропускает фрагменты, если первый из них не пройдет регистрации.

3. Шлюзы прикладного уровня

Межсетевые экраны данного класса позволяют фильтровать отдельные виды команд или наборы данных в протоколах прикладного уровня. Для этого используются прокси-сервисы - программы специального назначения, управляющие трафиком через межсетевой экран для определённых высокоуровневых протоколов (http, ftp, telnet и т.д.).

Если без использование прокси-сервисов сетевое соединение устанавливается между взаимодействующими сторонами A и B напрямую, то в случае использования прокси-сервиса появляется посредник - прокси-сервер , который самостоятельно взаимодействует со вторым участником информационного обмена. Такая схема позволяет контролировать допустимость использования отдельных команд протоколов высокого уровня, а также фильтровать данные, получаемые прокси-сервером извне; при этом прокси-сервер на основании установленных политик может принимать решение о возможности или невозможности передачи этих данных клиенту A.

Межсетевые экраны прикладного уровня, или прокси-экраны, представляют собой программные пакеты, базирующиеся на операционных системах общего назначения (таких как Windows NT и Unix) или на аппаратной платформе межсетевых экранов.

В межсетевом экране прикладного уровня каждому разрешаемому протоколу должен соответствовать свой собственный модуль доступа. Лучшими модулями доступа считаются те, которые построены специально для разрешаемого протокола. Например, модуль доступа FTP предназначен для протокола FTP и может определять, соответствует ли проходящий трафик этому протоколу и разрешен ли этот трафик правилами политики безопасности.

Межсетевой экран принимает соединение, анализирует содержимое пакета и используемый протокол и определяет, соответствует ли данный трафик правилам политики безопасности. При соответствии межсетевой экран инициирует новое соединение между своим внешним интерфейсом и системой-сервером.

Модуль доступа в межсетевом экране принимает входящее подключение и обрабатывает команды перед отправкой трафика получателю, и таким образом защищает системы от атак, выполняемых посредством приложений.

Межсетевые экраны прикладного уровня содержат модули доступа для наиболее часто используемых протоколов, таких как HTTP, SMTP, FTP и telnet. Некоторые модули доступа могут отсутствовать, что запрещает конкретному протоколу использоваться для соединения через межсетевой экран.

4. Межсетевые экраны экспертного уровня.

Наиболее сложные межсетевые экраны, сочетающие в себе элементы всех трёх приведённых выше категорий. Вместо прокси-сервисов в таких экранах используются алгоритмы распознавания и обработки данных на уровне приложений. Большинство используемых в настоящее время межсетевых экранов относятся к категории экспертных. Наиболее известные и распространённые МЭ - CISCO PIX и CheckPoint FireWall-1 . Производители межсетевых экранов прикладного уровня, из-за быстрого развития IT-технологий, пришли к выводу, что необходимо разработать метод поддержки протоколов, для которых не существует определенных модулей доступа. Так появилась технология модуля доступа Generic Services Proxy (GSP), которая разработана для поддержки модулями доступа прикладного уровня других протоколов, необходимых системе безопасности и при работе сетевых администраторов. GSP обеспечивает работу межсетевых экранов прикладного уровня в качестве экранов с пакетной фильтрацией. Разновидность межсетевых экранов с пакетной фильтрацией уже поставляются с модулем доступа SMTP. На нынешнее время фактически невозможно найти межсетевой экран, функционирование которого построено исключительно на прикладном уровне или фильтрации пакетов, так как оно позволяет администраторам, отвечающим за безопасность, настраивать устройство для работы в конкретных условиях.

(источник Ответы прошлого года)

Основным нормативным документом по МЭ является «Руководящий документ. Средства вычислительной техники. Межсетевые экраны. Защита от несанкционированного доступа к информации. Показатели защищенности от несанкционированного доступа к информации» (Утв. Гостехкомиссией от 25 июля 1997 г.)

По нему МЭ представляет собой локальное (однокомпонентное) или функционально-распределенное средство (комплекс), реализующее контроль за информацией, поступающей в АС и/или выходящей из АС, и обеспечивает защиту АС посредством фильтрации информации, т.е. ее анализа по совокупности критериев и принятия решения о ее распространении в (из) АС.

Устанавливается пять классов защищенности МЭ .

Каждый класс характеризуется определенной минимальной совокупностью требований по защите информации.

Самый низкий класс защищенности - пятый, применяемый для безопасного взаимодействия АС класса 1Д с внешней средой, четвертый - для 1Г, третий - 1В, второй - 1Б, самый высокий - первый, применяемый для безопасного взаимодействия АС класса 1А с внешней средой.

Требования, предъявляемые к МЭ, не исключают требований, предъявляемых к средствам вычислительной техники (СВТ) и АС в соответствии с руководящими документами Гостехкомиссии России “Средства вычислительной техники. Защита от несанкционированного доступа к информации. Показатели защищенности от несанкционированного доступа к информации” и “Автоматизированные системы. Защита от несанкционированного доступа к информации. Классификация автоматизированных систем и требования по защите информации”.

При включении МЭ в АС определенного класса защищенности, класс защищенности совокупной АС, полученной из исходной путем добавления в нее МЭ, не должен понижаться.

Для АС класса 3Б, 2Б должны применяться МЭ не ниже 5 класса.

Для АС класса 3А, 2А в зависимости от важности обрабатываемой информации должны применяться МЭ следующих классов:

При обработке информации с грифом “секретно” - не ниже 3 класса;

При обработке информации с грифом “совершенно секретно” - не ниже 2 класса;

При обработке информации с грифом “особой важности” - не ниже 1 класса.

Требования к межсетевым экранам

Показатели защищенности

Классы защищенности

Управление доступом (фильтрация данных и трансляция адресов)

Идентификация и аутентификация

Регистрация

Администрирование: идентификация и аутентификация

Администрирование: регистрация

Администрирование: простота использования

Целостность

Восстановление

Тестирование

Руководство администратора защиты

Тестовая документация

Конструкторская (проектная) документация

(источник РД МЭ)

Различают несколько типов межсетевых экранов в зависимости от следующих характеристик:

    обеспечивает ли экран соединение между одним узлом и сетью или между двумя или более различными сетями;

    происходит ли контроль потока данных на сетевом уровне или более высоких уровнях модели OSI;

    отслеживаются ли состояния активных соединений или нет.

В зависимости от охвата контролируемых потоков данных межсетевые экраны подразделяются на:

    традиционный сетевой (или межсетевой) экран – программа (или неотъемлемая часть операционной системы) на шлюзе (устройстве, передающем трафик между сетями) или аппаратное решение, контролирующие входящие и исходящие потоки данных между подключенными сетями (объектами распределённой сети);

    персональный межсетевой экран – программа, установленная на пользова-тельском компьютере и предназначенная для защиты от несанкционированного доступа только этого компьютера.

В зависимости от уровня OSI, на котором происходит контроль доступа, сетевые экраны могут работать на:

    сетевом уровне , когда фильтрация происходит на основе адресов отправителя и получателя пакетов, номеров портов транспортного уровня модели OSI и статических правил, заданных администратором;

    сеансовом уровне (также известные, как stateful ), когда отслеживаются сеансы между приложениями и не пропускаются пакеты, нарушающие спецификации TCP/IP, часто используемые в злонамеренных операциях – сканирование ресурсов, взломы через неправильные реализации TCP/IP, обрыв/замедление соединений, инъекция данных;

    прикладном уровне (или уровне приложений), когда фильтрация производится на основании анализа данных приложения, передаваемых внутри пакета. Такие типы экранов позволяют блокировать передачу нежелательной и потенциально опасной информации на основании политик и настроек.

Фильтрация на сетевом уровне

Фильтрация входящих и исходящих пакетов осуществляется на основе информации, содержащейся в следующих полях TCP- и IP-заголовков пакетов: IP-адрес отправителя; IP-адрес получателя; порт отправителя; порт получателя.

Фильтрация может быть реализована различными способами для блокирования соединений с определенными компьютерами или портами. Например, можно блокировать соединения, идущие от конкретных адресов тех компьютеров и сетей, которые считаются ненадежными.

    сравнительно невысокая стоимость;

    гибкость в определении правил фильтрации;

    небольшая задержка при прохождении пакетов.

Недостатки:

    не собирает фрагментированные пакеты;

    нет возможности отслеживать взаимосвязи (соединения) между пакетами.?

Фильтрация на сеансовом уровне

В зависимости от отслеживания активных соединений межсетевые экраны могут быть:

    stateless (простая фильтрация), которые не отслеживают текущие соединения (например, TCP), а фильтруют поток данных исключительно на основе статических правил;

    stateful, stateful packet inspection (SPI) (фильтрация с учётом контекста), с отслеживанием текущих соединений и пропуском только таких пакетов, которые удовлетворяют логике и алгоритмам работы соответствующих протоколов и приложений.

Межсетевые экраны с SPI позволяют эффективнее бороться с различными видами DoS-атак и уязвимостями некоторых сетевых протоколов. Кроме того, они обеспечивают функционирование таких протоколов, как H.323, SIP, FTP и т. п., которые используют сложные схемы передачи данных между адресатами, плохо поддающиеся описанию статическими правилами, и зачастую несовместимых со стандартными, stateless сетевыми экранами.

К преимуществам такой фильтрации относится:

    анализ содержимого пакетов;

    не требуется информации о работе протоколов 7 уровня.

Недостатки:

    сложно анализировать данные уровня приложений (возможно с использованием ALG – Application level gateway).

Application level gateway, ALG (шлюз прикладного уровня) – компонент NAT-маршрутизатора, который понимает какой-либо прикладной протокол, и при прохождении через него пакетов этого протокола модифицирует их таким образом, что находящиеся за NAT’ом пользователи могут пользоваться протоколом.

Служба ALG обеспечивает поддержку протоколов на уровне приложений (таких как SIP, H.323, FTP и др.), для которых подмена адресов/портов (Network Address Translation) недопустима. Данная служба определяет тип приложения в пакетах, приходящих со стороны интерфейса внутренней сети и соответствующим образом выполняя для них трансляцию адресов/портов через внешний интерфейс.

Технология SPI (Stateful Packet Inspection) или технология инспекции пакетов с учетом состояния протокола на сегодня является передовым методом контроля трафика. Эта технология позволяет контролировать данные вплоть до уровня приложения, не требуя при этом отдельного приложения посредника или proxy для каждого защищаемого протокола или сетевой службы.

Исторически эволюция межсетевых экранов происходила от пакетных фильтров общего назначения, затем стали появляться программы-посредники для отдельных протоколов, и, наконец, была разработана технология stateful inspection. Предшествующие технологии только дополняли друг друга, но всеобъемлющего контроля за соединениями не обеспечивали. Пакетным фильтрам недоступна информация о состоянии соединения и приложения, которая необходима для принятия заключительного решения системой безопасности. Программы-посредники обрабатывают только данные уровня приложения, что зачастую порождает различные возможности для взлома системы. Архитектура stateful inspection уникальна потому, что она позволяет оперировать всей возможной информацией, проходящей через машину-шлюз: данными из пакета, данными о состоянии соединения, данными, необходимыми для приложения.

Пример работы механизма Stateful Inspection . Межсетевой экран отслеживает сессию FTP, проверяя данные на уровне приложения. Когда клиент запрашивает сервер об открытии обратного соединения (команда FTP PORT), межсетевой экран извлекает номер порта из этого запроса. В списке запоминаются адреса клиента и сервера, номера портов. При фиксировании попытки установить соединение FTP-data, межсетевой экран просматривает список и проверяет, действительно ли данное соединение является ответом на допустимый запрос клиента. Список соединений поддерживается динамически, так что открыты только необходимые порты FTP. Как только сессия закрывается, порты блокируются, обеспечивая высокий уровень защищенности.

Рис. 2.12. Пример работы механизма Stateful Inspection с FTP-протоколом

Фильтрация на прикладном уровне

С целью защиты ряда уязвимых мест, присущих фильтрации пакетов, межсетевые экраны должны использовать прикладные программы для фильтрации соединений с такими сервисами, как, например, Telnet, HTTP, FTP. Подобное приложение называется proxy-службой, а хост, на котором работает proxy-служба – шлюзом уровня приложений. Такой шлюз исключает прямое взаимодействие между авторизованным клиентом и внешним хостом. Шлюз фильтрует все входящие и исходящие пакеты на прикладном уровне (уровне приложений – верхний уровень сетевой модели) и может анализировать содержимое данных, например, адрес URL, содержащийся в HTTP-сообщении, или команду, содержащуюся в FTP-сообщении. Иногда эффективнее бывает фильтрация пакетов, основанная на информации, содержащейся в самих данных. Фильтры пакетов и фильтры уровня канала не используют содержимое информационного потока при принятии решений о фильтрации, но это можно сделать с помощью фильтрации уровня приложений. Фильтры уровня прил ожений могут использовать информацию из заголовка пакета, а также содержимого данных и информации о пользователе. Администраторы могут использовать фильтрацию уровня приложений для контроля доступа на основе идентичности пользователя и/или на основе конкретной задачи, которую пытается осуществить пользователь. В фильтрах уровня приложений можно установить правила на основе отдаваемых приложением команд. Например, администратор может запретить конкретному пользователю скачивать файлы на конкретный компьютер с помощью FTP или разрешить пользователю размещать файлы через FTP на том же самом компьютере.

К преимуществам такой фильтрации относится:

    простые правила фильтрации;

    возможность организации большого числа проверок. Защита на уровне приложений позволяет осуществлять большое количество дополнительных проверок, что снижает вероятность взлома с использованием "дыр" в программном обеспечении;

    способность анализировать данные приложений.

Недостатки:

    относительно низкая производительность по сравнению с фильтрацией пакетов;

    proxy должен понимать свой протокол (невозможность использования с неизвестными протоколами)?;

    как правило, работает под управлением сложных ОС.

14.9. Межсетевые экраны

Интерес к межсетевым экранам (брандмауэр, firewall) со стороны людей, подключенных к интернет, все возрастает и появились даже приложения для локальной сети, предоставляющие повышенный уровень безопасности. В этом разделе мы надеемся изложить что такое межсетевые экраны, как их использовать, и как использовать возможности, предоставляемые ядром FreeBSD для их реализации.

14.9.1. Что такое межсетевой экран?

Есть два четко различающихся типа межсетевых экранов, повседневно используемых в современном интернет. Первый тип правильнее называть маршрутизатор с фильтрацией пакетов . Этот тип межсетевого экрана работает на машине, подключенной к нескольким сетям и применяет к каждому пакету набор правил, определяющий переправлять ли этот пакет или блокировать. Второй тип, известный как прокси сервер , реализован в виде даемонов, выполняющих аутентификацию и пересылку пакетов, возможно на машине с несколькими сетевыми подключениями, где пересылка пакетов в ядре отключена.

Иногда эти два типа межсетевых экранов используются вместе, так что только определенной машине (известной как защитный хост (bastion host) ) позволено отправлять пакеты через фильтрующий маршрутизатор во внутреннюю сеть. Прокси сервисы работают на защитном хосте, что обычно более безопасно, чем обычные механизмы аутентификации.

FreeBSD поставляется с встроенным в ядро фильтром пакетом (известным как IPFW), ему будет посвящена оставшаяся часть раздела. Прокси серверы могут быть собраны на FreeBSD из программного обеспечения сторонних разработчиков, но их слишком много и невозможно описать их в этом разделе.

14.9.1.1. Маршрутизаторы с фильтрацией пакетов

Маршрутизатор это машина, пересылающая пакеты между двумя или несколькими сетями. Маршрутизатор с фильтрацией пакетов запрограммирован на сравнение каждого пакета со списком правил перед тем как решить, пересылать его или нет. Большинство современного программного обеспечения маршрутизации имеет возможности фильтрации, и по умолчанию пересылаются все пакеты. Для включения фильтров, вам потребуется определить набор правил.

Для определения того, должен ли быть пропущен пакет, межсетевой экран ищет в наборе правило, совпадающее с содержимым заголовков пакета. Как только совпадение найдено, выполняется действие, присвоенное данному правилу. Действие может заключаться в отбрасывании пакета, пересылке пакета, или даже в отправлении ICMP сообщения в адрес источника. Учитывается только первое совпадение, поскольку правила просматриваются в определенном порядке. Следовательно, список правил можно назвать «цепочкой правил» .

Критерий отбора пакетов зависит от используемого программного обеспечения, но обычно вы можете определять правила, зависящие от IP адреса источника пакета, IP адреса назначения, номера порта источника пакета, номера порта назначения (для протоколов, поддерживающих порты), или даже от типа пакета (UDP, TCP, ICMP, и т.д.).

14.9.1.2. Прокси серверы

Прокси серверы это компьютеры, где обычные системные даемоны (telnetd , ftpd , и т.д.) заменены специальными серверами. Эти серверы называются прокси серверами , поскольку они обычно работают только с входящими соединениями. Это позволяет запускать (например) telnet прокси сервер на межсетевом экране, и делать возможным вход по telnet на межсетевой экран, прохождение механизма аутентификации, и получение доступа к внутренней сети (аналогично, прокси серверы могут быть использованы для выхода во внешнюю сеть).

Прокси серверы обычно лучше защищены, чем другие серверы, и зачастую имеют более широкий набор механизмов аутентификации, включая системы «одноразовых» паролей, так что даже если кто-то узнает, какой пароль вы использовали, он не сможет использовать его для получения доступа к системе, поскольку срок действия пароля истекает немедленно после его первого использования. Поскольку пароль не дает доступа непосредственно к компьютеру, на котором находится прокси-сервер, становится гораздо сложнее установить в систему backdoor.

Прокси серверы обычно имеют способ дополнительного ограничения доступа, так что только определенные хосты могут получить доступ к серверам. Большинство также позволяют администратору указывать, пользователей и компьютеры, к которым они могут обращаться. Опять же доступные возможности в основном зависят от используемого программного обеспечения.

14.9.2. Что позволяет делать IPFW?

Программное обеспечение IPFW, поставляемое с FreeBSD, это система фильтрации и учета пакетов, находящаяся в ядре и снабженная пользовательской утилитой настройки, ipfw (8) . Вместе они позволяют определять и просматривать правила, используемые ядром при маршрутизации.

IPFW состоит из двух связанных частей. Межсетевой экран осуществляет фильтрацию пакетов. Часть, занимающаяся учетом IP пакетов, отслеживает использование маршрутизатора на основе правил подобных тем, что используются в части межсетевого экрана. Это позволяет администратору определять, например, объем трафика, полученного маршрутизатором от определенного компьютера, или объем пересылаемого WWW трафика.

Благодаря тому, как реализован IPFW, вы можете использовать его и на компьютерах, не являющихся маршрутизаторами для фильтрации входящих и исходящих соединений. Это особый случай более общего использования IPFW, и в этой ситуации используются те же команды и техника.

14.9.3. Включение IPFW в FreeBSD

Поскольку основная часть системы IPFW находится в ядре, вам потребуется добавить один или несколько параметров в файл настройки ядра, в зависимости от требуемых возможностей, и пересобрать ядро. Обратитесь к главе о пересборке ядра (Гл. 8) за подробным описанием этой процедуры.

Внимание: Правилом IPFW по умолчанию является deny ip from any to any. Если вы не добавите других правил во время загрузки для разрешения доступа, то заблокируете доступ к серверу с включенным в ядро межсетевым экраном после перезагрузки. Мы предлагаем указать firewall_type=open в файле /etc/rc.conf при первоначальном добавлении межсетевого экрана, а затем, после тестирования его работоспособности, отредактировать правила в файле /etc/rc.firewall. Дополнительной предосторожностью может быть первоначальная настройка межсетевого экрана с локальной консоли, вместо входа через ssh . Кроме того, возможна сборка ядра с параметрами IPFIREWALL и IPFIREWALL_DEFAULT_TO_ACCEPT. В этом случае правило IPFW по умолчанию будет изменено на allow ip from any to any, что предотвратит возможную блокировку.

Существует четыре параметра настройки ядра, относящихся к IPFW:

options IPFIREWALL

Включает в ядро код для фильтрации пакетов.

Options IPFIREWALL_VERBOSE

Включает протоколирование пакетов через syslogd (8) . Без этого параметра, даже если вы укажете в правилах фильтрации протоколировать пакеты, это не сработает.

Options IPFIREWALL_VERBOSE_LIMIT=10

Ограничивает число пакетов, протоколируемых каждым правилом через syslogd (8) . Вы можете использовать этот параметр если хотите протоколировать работу межсетевого экрана, но не хотите делать возможной DoS атаку путем переполнения syslog.

Когда для одного из правил в цепочке достигается определенный параметром предел, протоколирование для этого правила выключается. Для включения протоколирования, вам потребуется сбросить соответствующий счетчик с помощью утилиты ipfw (8) :

# ipfw zero 4500

где 4500 это номер правила, для которого вы хотите возобновить протоколирование.

Options IPFIREWALL_DEFAULT_TO_ACCEPT

Изменяет правило по умолчанию с «deny» на «allow». Это предотвращает возможное блокирование, если ядро загружено с поддержкой IPFIREWALL, но межсетевой экран еще не настроен. Этот параметр также полезен, если вы используете ipfw (8) в качестве средства от определенных проблем по мере их возникновения. Тем не менее, используйте параметр с осторожностью, поскольку он открывает межсетевой экран и изменяет его поведение.

Замечание: Предыдущие версии FreeBSD содержали параметр IPFIREWALL_ACCT. Этот параметр устарел, поскольку код автоматически включает возможность учета.

14.9.4. Настройка IPFW

Настройка программного обеспечения IPFW выполняется с помощью утилиты ipfw (8) . Синтаксис этой команды выглядит очень сложным, но он становится относительно прост как только вы поймете его структуру.

В настоящее время утилита использует четыре различных категории команд: добавление/удаление (addition/deletion), просмотр (listing), сброс (flushing) и очистка (clearing). Добавление/удаление используется для создания правил, определяющих как пакеты принимаются, отбрасываются и протоколируются. Просмотр используется для определения содержимого набора правил (называемого еще цепочкой) и счетчиков пакетов (учет). Сброс используется для удаления всех правил цепочки. Очистка используется для обнуления одного или нескольких счетчиков.

14.9.4.1. Изменение правил IPFW

ipfw [-N] команда [номер] действие протокол адреса [параметры]

При использовании этой формы команды доступен один флаг:

Разрешение адресов и имен сервисов при отображении.

Задаваемая команда может быть сокращена до более короткой уникальной формы. Существующие команды :

Добавление правила к списку фильтрации/учета

Удаление правила из списка фильтрации/учета

Предыдущие версии IPFW использовали отдельные записи для фильтрации и учета пакетов. Современные версии учитывают пакеты для каждого правила.

Если указано значение номер , оно используется для помещения правила на определенную позицию в цепочке. Иначе правило помещается в конец цепочки с номером на 100 больше, чем у предыдущего правила (сюда не включается правило по умолчанию с номером 65535).

С параметром log соответствующие правила выводят информацию на системную консоль, если ядро собрано с опцией IPFIREWALL_VERBOSE.

Существующие действия :

Отбросить пакет и отправить в адрес источникаICMP пакет, сообщающий о недостижимости хоста или порта.

Пропустить пакет как обычно. (синонимы: pass, permit, и accept)

Отбросить пакет. Источнику не выдается ICMP сообщение (как если бы пакет вообще не достиг цели).

Обновить счетчик пакета, но не применять по отношению к нему правила allow/deny. Поиск продолжится со следующего правила в цепочке.

Каждое действие может быть записано в виде более короткого уникального префикса.

Могут быть определены следующие протоколы :

Соответствует всем IP пакетам

Соответствует ICMP пакетам

Соответствует TCP пакетам

Соответствует UDP пакетам

Поле адреса формируется так:

источник адрес/маска [порт ] цель адрес/маска [порт ]

Вы можете указать port только вместе с протоколами , поддерживающими порты (UDP и TCP).

Параметр via опционален и может содержать IP адрес или имя домена локального IP интерфейса, или имя интерфейса (например ed0), он настраивает правило на соответствие только тем пакетам, которые проходят через этот интерфейс. Номера интерфейсов могут быть заменены на опциональную маску. Например, ppp* будет соответствовать PPP интерфейсам ядра.

Синтаксис, используемый для указания адреса/маски :

адрес или адрес /маска-биты или адрес :маска-шаблон

Вместо IP адреса возможно указание существующего имени хоста. маска-биты это десятичный номер, указывающий количество бит, которые должны быть установлены в маске адреса. Например, 192.216.222.1/24 создаст маску, соответствующую всем адресам подсети класса C (в данном случае, 192.216.222). A valid hostname may be specified in place of the IP address. маска-шаблон это IP, который будет логически перемножен с заданным адресом. Ключевое слово any может использоваться для обозначения «любого IP адреса».

Номера портов указываются в следующем формате:

порт [,порт [,порт [.]]]

Для указания одного порта или списка портов, или

порт -порт

Для указания диапазона портов. Вы можете также комбинировать указание одного диапазона со списком портов, но диапазон всегда должен указываться первым.

Доступные параметры :

Срабатывает, если пакет не является первым пакетом дейтаграммы.

Соответствует входящим пакетам.

Соответствует исходящим пакетам.

Ipoptions spec

Срабатывает, если заголовок IP содержит перечисленный через запятую список параметров, указанных в spec . Поддерживаемые параметры IP: ssrr (strict source route), lsrr (loose source route), rr (record packet route), и ts (time stamp). Действие отдельных параметров может быть изменено путем указания префикса!.

Established

Срабатывает, если пакет является частью уже установленного TCP соединения (т.е. если установлены биты RST или ACK). Вы можете поднять производительность межсетевого экрана, поместив правило с established близко к началу цепочки.

Соответствует, если пакет является попыткой установки TCP соединения (установлен бит SYN, а бит ACK не установлен).

Tcpflags флаги

Срабатывает, если заголовок TCP содержит список перечисленных через запятую флагов . Поддерживаемые флаги: fin, syn, rst, psh, ack, и urg. Действие правил по отдельным флагам может быть изменено указанием префикса!.

Icmptypes типы

Срабатывает, если тип пакета ICMP находится в списке типы . Список может быть указан в виде любой комбинации диапазонов и/или отдельных типов, разделенных запятыми. Обычно используемые типы ICMP: 0 echo reply (ping reply), 3 destination unreachable, 5 redirect, 8 echo request (ping request), и 11 time exceeded (используется для обозначения истечения TTL, как с traceroute (8) ).

14.9.4.2. Просмотр правил IPFW

Синтаксис этой формы команды такой:

ipfw [-a] [-c] [-d] [-e] [-t] [-N] [-S] list

Для этой формы команды существует семь флагов:

Показывать значения счетчиков. Этот параметр -- единственный путь для просмотра значений счетчиков.

Просмотр правил в компактной форме.

Показывать динамические правила в дополнение к статическим.

Если определен параметр -d, показывать также динамические правила с истекшим сроком действия.

Отображать последнее время срабатывание для каждого правила в цепочке. Этот список несовместим с синтаксисом, принимаемым ipfw (8) .

Попытаться разрешить заданные адреса и имена сервисов.

Отображать набор, к которому принадлежит каждое правило. Если этот флаг не указан, заблокированные правила не будут отображены.

14.9.4.3. Сброс правил IPFW

Синтаксис для сброса правил:

Все правила в цепочке будут удалены, за исключением правила по умолчанию, устанавливаемого ядром (номер 65535). Будьте осторожны при сбросе правил; правило, отбрасывающее пакеты по по умолчанию отключит систему от сети, пока разрешающие правила не будут добавлены в цепочку.

14.9.4.4. Очистка счетчиков пакетов IPFW

Синтаксис для очистки одного или нескольких счетчиков пакетов:

ipfw zero [index ]

При использовании без аргумента номер будут очищены все счетчики пакетов. Если index указан, операция очистки применяется только к указанному правилу цепочки.

14.9.5. Примеры команд для ipfw

Следующая команда запретит все пакеты с хоста evil.crackers.org на telnet порт хоста nice.people.org:

# ipfw add deny tcp from evil.crackers.org to nice.people.org 23

Следующий пример запрещает и протоколирует весь TCP трафик из сети crackers.org (класса C) к компьютеру nice.people.org (на любой порт).

# ipfw add deny log tcp from evil.crackers.org/24 to nice.people.org

Если вы хотите запретить организацию X сессий в вашу сеть (часть сети класса C), следующая команда осуществит необходимую фильтрацию:

# ipfw add deny tcp from any to my.org/28 6000 setup

Для просмотра записей учета:

# ipfw -a list или в краткой форме # ipfw -a l

Вы можете также просмотреть время последнего срабатывания правил с помощью команды:

14.9.6. Создание межсетевого экрана с фильтрацией пакетов

При первоначальной настройке межсетевого экрана, до тестирования производительности и введения сервера в строй, настоятельно рекомендуется использовать версии команд с протоколированием и включить протоколирование в ядре. Это позволит вам быстро выявить проблемные области и исправить настройку без больших усилий. Даже после завершения первоначальной настройки рекомендуется использовать протоколирование для «deny», поскольку это позволяет отслеживать возможные атаки и изменять правила межсетевого экрана, если требования к нему изменятся.

Замечание: Если вы используете версию команды accept с протоколированием, будьте осторожны, поскольку она может создать большой объем протокольных данных. Будет произведено протоколирование каждого пакета, проходящего через межсетевой экран, поэтому большие объемы FTP/http и другого трафика существенно замедлят систему. Это также увеличит задержку таких пакетов, поскольку ядру требуется выполнить дополнительную работу перед тем, как пропустить пакет. syslogd также будет использовать гораздо больше времени процессора, поскольку он отправит все дополнительные данные на диск, и раздел /var/log может быть быстро заполнен.

Вам потребуется включить межсетевой экран в /etc/rc.conf.local или /etc/rc.conf. Соответствующая страница справочника разъясняет что именно необходимо сделать и содержит примеры готовых настроек. Если вы не используете предустановленную настройку, команда ipfw list может поместить текущий набор правил в файл, откуда он может быть помещен в стартовые файлы системы. Если вы не используете /etc/rc.conf.local или /etc/rc.conf для включения межсетевого экрана, важно убедиться в том, что он включается после настройки интерфейсов.

Далее необходимо определить, что именно делает ваш межсетевой экран! Это в основном зависит от того, насколько широкий доступ вы хотите открыть снаружи к вашей сети. Вот несколько общих правил:

    Заблокируйте доступ снаружи к портам TCP с номерами ниже 1024. Здесь расположена большая часть критичных для безопасности сервисов, таких как finger, SMTP (почта) и telnet.

    Заблокируйте весь входящий трафик UDP. Есть очень немного полезных сервисов, работающих через UDP, но они обычно представляют угрозу безопасности (например, Sun RPC и NFS протоколы). У этого способа есть и недостатки, поскольку протокол UDP не поддерживает соединения, и запрещение входящих пактов заблокирует также ответы на исходящий UDP трафик. Это может стать проблемой для тех, кто использует внешние серверы, работающие с UDP. Если вы хотите открыть доступ к этим сервисам, потребуется разрешить входящие пакеты с соответствующих портов. К примеру, для ntp вам может потребоваться разрешить пакеты, приходящие с порта 123.

    Заблокировать весь трафик снаружи к порту 6000. Порт 6000 используется для доступа к серверам X11, и может быть угрозой безопасности (особенно если у пользователей есть привычка выполнять на своих рабочих станциях команду xhost +). X11 может использовать диапазон портов, начинающийся с 6000, верхний предел определяется количеством X дисплеев, которые могут быть запущены на машине. Верхний предел, определенный RFC 1700 (Assigned Numbers), равен 6063.

    Проверьте порты, используемые внутренними сервисами (например, SQL серверами и т.п.). Возможно хорошей идеей является блокирование и этих портов, поскольку они обычно не попадают в диапазон 1-1024, указанный выше.

Еще один список для проверки настроек межсетевого экрана доступен на CERT по адресу http://www.cert.org/tech_tips/packet_filtering.html

Как сказано выше, все эти правила всего лишь руководство . Вы сами сможете решить, какие правила фильтрации будут использованы в межсетевом экране. Мы не можем нести НИКАКОЙ ответственности в случае взлома вашей сети, даже если вы следовали советам, представленным выше.

14.9.7. Накладные расходы и оптимизация IPFW

Многие пользователи хотят знать, как сильно IPFW нагружает систему. Ответ в основном зависит от набора правил и скорости процессора. При небольшом наборе правил для большинства приложений, работающих в Ethernet ответ «незначительно». Для тех, кому нужен более точный ответ, и предназначен этот раздел.

Последующие измерения были выполнены с 2.2.5-STABLE на 486-66. (Хотя IPFW немного изменился в последующих релизах FreeBSD, скорость осталась приблизительно той же.) IPFW был модифицирован для измерения времени, затраченного ip_fw_chk, с выводом на консоль результата после каждого 1000-го пакета.

Были протестированы два набора из 1000 правил. Первый был составлен для демонстрации плохого набора правил путем повторения правила:

# ipfw add deny tcp from any to any 55555

Этот набор правил плох, поскольку большая часть правил IPFW не соответствует проверяемым пакетам (из-за номера порта). После 999-й итерации этого правила следует правило allow ip from any to any.

Второй набор правил был разработан для быстрейшей проверки каждого правила:

# ipfw add deny ip from 1.2.3.4 to 1.2.3.4

Не совпадающий IP адрес источника в правиле выше приведет к очень быстрой проверке этих правил. Как и прежде, 1000-е правило allow ip from any to any.

Затраты на проверку пакета в первом случае приблизительно 2.703 мс/пакет, или приблизительно 2.7 микросекунд на правило. Теоретический предел скорости проверки около 370 пакетов в секунду. Предполагая подключение через 10 Mbps Ethernet и размер пакета приблизительно 1500 байт, получаем только 55.5% использования пропускной способности.

Во втором случае каждый пакет был проверен приблизительно за 1.172 мс, или приблизительно 1.2 микросекунд на правило. Теоретический предел скорости проверки около 853 пакетов в секунду, что делает возможным полное использование пропускной способности 10 Mbps Ethernet.

Чрезмерное количество проверяемых правил и их вид не позволяет составить картину близкую к обычным условиям -- эти правила были использованы только для получения информации о времени проверки. Вот несколько рекомендаций, которые необходимо учесть для создания эффективного набора правил:

    Поместите правило established как можно раньше для обработки большей части TCP трафика. Не помещайте перед ним правила allow tcp.

    Помещайте часто используемые правила ближе к началу набора чем редко используемые (конечно же, без изменения действия всего набора ). Вы можете определить наиболее часто используемые правила путем проверки счетчиков пакетов командой ipfw -a l.

Межсетевой экран (МСЭ) - это устройство обеспечения безопасности сети, которое осуществляет мониторинг входящего и исходящего сетевого трафика и на основании установленного набора правил безопасности принимает решения, пропустить или блокировать конкретный трафик.

Межсетевые экраны используются в качестве первой линии защиты сетей уже более 25 лет. Они ставят барьер между защищенными, контролируемыми внутренними сетями, которым можно доверять, и ненадежными внешними сетями, такими как Интернет.

Межсетевой экран может быть аппаратным, программным или смешанного типа.

Типы межсетевых экранов

Прокси-сервер

Это один из первых типов МСЭ. Прокси-сервер служит шлюзом между сетями для конкретного приложения. Прокси-серверы могут выполнять дополнительные функции, например кэширование и защиту контента, препятствуя прямым подключениям из-за пределов сети. Однако это может отрицательно сказаться на пропускной способности и производительности поддерживаемых приложений.

Межсетевой экран с контролем состояния сеансов

Сегодня МСЭ с контролем состояния сеансов считается «традиционным». Он пропускает или блокирует трафик с учетом состояния, порта и протокола. Он осуществляет мониторинг всей активности с момента открытия соединения и до его закрытия. Решения о фильтрации принимаются на основании как правил, определяемых администратором, так и контекста. Под контекстом понимается информация, полученная из предыдущих соединений и пакетов, принадлежащих данному соединению.

Межсетевой экран UTM

Типичное устройство UTM, как правило, сочетает такие функции, как контроль состояния сеансов, предотвращение вторжений и антивирусное сканирование. Также оно может включать в себя дополнительные службы, а зачастую - и управление облаком. Основные достоинства UTM - простота и удобство.

Межсетевой экран нового поколения (NGFW)

Современные межсетевые экраны не ограничиваются фильтрацией пакетов и контролем состояния сеансов. Большинство компаний внедряет межсетевые экраны нового поколения, чтобы противостоять современным угрозам, таким как сложное вредоносное ПО и атаки на уровне приложений.

Согласно определению компании Gartner, Inc., межсетевой экран нового поколения должен иметь:

  • стандартные функции МСЭ, такие как контроль состояния сеансов;
  • встроенную систему предотвращения вторжений;
  • функции учета и контроля особенностей приложений, позволяющие распознавать и блокировать приложения, представляющие опасность;
  • схему обновления, позволяющую учитывать будущие каналы информации;
  • технологии защиты от постоянно меняющихся и усложняющихся угроз безопасности.

И хотя эти возможности постепенно становятся стандартными для большинства компаний, межсетевые экраны нового поколения способны на большее.

NGFW с активной защитой от угроз

Эти межсетевые экраны сочетают в себе функции традиционного NGFW с возможностями обнаружения и нейтрализации сложных угроз. Межсетевые экраны нового поколения с активной защитой от угроз позволяют:

  • определять благодаря полному учету контекста, какие ресурсы наиболее подвержены риску ;
  • быстро реагировать на атаки благодаря интеллектуальной автоматизации безопасности, которая устанавливает политики и регулирует защиту в динамическом режиме;
  • с большей надежностью выявлять отвлекающую или подозрительную деятельность, применяя корреляцию событий в сети и на оконечных устройствах;
  • значительно сократить время с момента распознавания до восстановления благодаря использованию ретроспективных средств обеспечения безопасности, которые осуществляют непрерывный мониторинг на предмет подозрительной деятельности и поведения даже после первоначальной проверки;
  • упростить администрирование и снизить уровень сложности с помощью унифицированных политик, обеспечивающих защиту на протяжении всего жизненного цикла атаки.

Цель данной статьи - сравнить сертифицированные межсетевые экраны, которые можно использовать при защите ИСПДн. В обзоре рассматриваются только сертифицированные программные продукты, список которых формировался из реестра ФСТЭК России.

Выбор межсетевого экрана для определенного уровня защищенности персональных данных

В данном обзоре мы будем рассматривать межсетевые экраны, представленные в таблице 1. В этой таблице указано название межсетевого экрана и его класс. Данная таблица будет особенно полезна при подборе программного обеспечения для защиты персональных данных.

Таблица 1. Список сертифицированных ФСТЭК межсетевых экранов

Программный продукт Класс МЭ
МЭ «Блокпост-Экран 2000/ХР» 4
Специальное программное обеспечение межсетевой экран «Z-2», версия 2 2
Средство защиты информации TrustAccess 2
Средство защиты информации TrustAccess-S 2
Межсетевой экран StoneGate Firewall 2
Средство защиты информации Security Studio Endpoint Protection Personal Firewall 4
Программный комплекс «Сервер безопасности CSP VPN Server.Версия 3.1» 3
Программный комплекс «Шлюз безопасности CSP VPN Gate.Версия 3.1» 3
Программный комплекс «Клиент безопасности CSP VPN Client. Версия 3.1» 3
Программный комплекс межсетевой экран «Ideco ICS 3» 4
Программный комплекс «Трафик Инспектор 3.0» 3
Средство криптографической защиты информации «Континент-АП». Версия 3.7 3
Межсетевой экран «Киберсейф: Межсетевой экран» 3
Программный комплекс «Интернет-шлюз Ideco ICS 6» 3
VipNet Office Firewall 4

Все эти программные продукты, согласно реестру ФСТЭК, сертифицированы как межсетевые экраны.
Согласно приказу ФСТЭК России №21 от 18 февраля 2013 г. для обеспечения 1 и 2 уровней защищенности персональных данных (далее ПД) применяются межсетевые экраны не ниже 3 класса в случае актуальности угроз 1-го или 2-го типов или взаимодействия информационной системы (ИС) с сетями международного информационного обмена и межсетевые экраны не ниже 4 класса в случае актуальности угроз 3-го типа и отсутствия взаимодействия ИС с Интернетом.

Для обеспечения 3 уровня защищенности ПД подойдут межсетевые экраны не ниже 3 класса (или 4 класса, в случае актуальности угроз 3-го типа и отсутствия взаимодействия ИС с Интернетом). А для обеспечения 4 уровня защищенности подойдут самые простенькие межсетевые экраны - не ниже 5 класса. Таковых, впрочем, в реестре ФСТЭК на данный момент не зарегистрировано. По сути, каждый из представленных в таблице 1 межсетевых экранов может использоваться для обеспечения 1-3 уровней защищенности при условии отсутствия угроз 3-го типа и отсутствия взаимодействия с Интернетом. Если же имеется соединение с Интернетом, то нужен межсетевой экран как минимум 3 класса.

Сравнение межсетевых экранов

Межсетевым экранам свойственен определенный набор функций. Вот и посмотрим, какие функции предоставляет (или не предоставляет) тот или иной межсетевой экран. Основная функция любого межсетевого экрана - это фильтрация пакетов на основании определенного набора правил. Не удивительно, но эту функцию поддерживают все брандмауэры.

Также все рассматриваемые брандмауэры поддерживают NAT. Но есть довольно специфические (но от этого не менее полезные) функции, например, маскировка портов, регулирование нагрузки, многопользовательских режим работы, контроль целостности, развертывание программы в ActiveDirectory и удаленное администрирование извне. Довольно удобно, согласитесь, когда программа поддерживает развертывание в ActiveDirectory - не нужно вручную устанавливать ее на каждом компьютере сети. Также удобно, если межсетевой экран поддерживает удаленное администрирование извне - можно администрировать сеть, не выходя из дому, что будет актуально для администраторов, привыкших выполнять свои функции удаленно.

Наверное, читатель будет удивлен, но развертывание в ActiveDirectory не поддерживают много межсетевых экранов, представленных в таблице 1, то же самое можно сказать и о других функциях, таких как регулирование нагрузки и маскировка портов. Дабы не описывать, какой из межсетевых экранов поддерживает ту или иную функцию, мы систематизировали их характеристики в таблице 2.

Таблица 2. Возможности брандмауэров

Как будем сравнивать межсетевые экраны?

Основная задача межсетевых экранов при защите персональных - это защита ИСПДн. Поэтому администратору часто все равно, какими дополнительными функциями будет обладать межсетевой экран. Ему важны следующие факторы:
  1. Время защиты . Здесь понятно, чем быстрее, тем лучше.
  2. Удобство использования . Не все межсетевые экраны одинаково удобны, что и будет показано в обзоре.
  3. Стоимость . Часто финансовая сторона является решающей.
  4. Срок поставки . Нередко срок поставки оставляет желать лучшего, а защитить данные нужно уже сейчас.

Безопасность у всех межсетевых экранов примерно одинаковая, иначе у них бы не было сертификата.

Брандмауэры в обзоре

Далее мы будем сравнивать три межсетевых экрана - VipNet Office Firewall, Киберсейф Межсетевой экран и TrustAccess.
Брандмауэр TrustAccess - это распределенный межсетевой экран с централизованным управлением, предназначенный для защиты серверов и рабочих станций от несанкционированного доступа, разграничения сетевого доступа к ИС предприятия.
Киберсейф Межсетевой экран - мощный межсетевой экран, разработанный для защиты компьютерных систем и локальной сети от внешних вредоносных воздействий.
ViPNet Office Firewall 4.1 - программный межсетевой экран, предназначенный для контроля и управления трафиком и преобразования трафика (NAT) между сегментов локальных сетей при их взаимодействии, а также при взаимодействии узлов локальных сетей с ресурсами сетей общего пользования.

Время защиты ИСПДн

Что такое время защиты ИСПДн? По сути, это время развертывания программы на все компьютеры сети и время настройки правил. Последнее зависит от удобства использования брандмауэра, а вот первое - от приспособленности его установочного пакета к централизованной установке.

Все три межсетевых экрана распространяются в виде пакетов MSI, а это означает, что можно использовать средства развертывания ActiveDirectory для их централизованной установки. Казалось бы все просто. Но на практике оказывается, что нет.

На предприятии, как правило, используется централизованное управление межсетевыми экранами. А это означает, что на какой-то компьютер устанавливается сервер управления брандмауэрами, а на остальные устанавливаются программы-клиенты или как их еще называют агенты. Проблема вся в том, что при установке агента нужно задать определенные параметры - как минимум IP-адрес сервера управления, а может еще и пароль и т.д.
Следовательно, даже если вы развернете MSI-файлы на все компьютеры сети, настраивать их все равно придется вручную. А этого бы не очень хотелось, учитывая, что сеть большая. Даже если у вас всего 50 компьютеров вы только вдумайтесь - подойти к каждому ПК и настроить его.

Как решить проблему? А проблему можно решить путем создания файла трансформации (MST-файла), он же файл ответов, для MSI-файла. Вот только ни VipNet Office Firewall, ни TrustAccess этого не умеют. Именно поэтому, кстати, в таблице 2 указано, что нет поддержки развертывания Active Directory. Развернуть то эти программы в домене можно, но требуется ручная работа администратора.

Конечно, администратор может использовать редакторы вроде Orca для создания MST-файла.


Рис. 1. Редактор Orca. Попытка создать MST-файл для TrustAccess.Agent.1.3.msi

Но неужели вы думаете, что все так просто? Открыл MSI-файл в Orca, подправил пару параметров и получил готовый файл ответов? Не тут то было! Во-первых, сам Orca просто так не устанавливается. Нужно скачать Windows Installer SDK, из него с помощью 7-Zip извлечь orca.msi и установить его. Вы об этом знали? Если нет, тогда считайте, что потратили минут 15 на поиск нужной информации, загрузку ПО и установку редактора. Но на этом все мучения не заканчиваются. У MSI-файла множество параметров. Посмотрите на рис. 1 - это только параметры группы Property. Какой из них изменить, чтобы указать IP-адрес сервера? Вы знаете? Если нет, тогда у вас два варианта: или вручную настроить каждый компьютер или обратиться к разработчику, ждать ответ и т.д. Учитывая, что разработчики иногда отвечают довольно долго, реально время развертывания программы зависит только от скорости вашего перемещения между компьютерами. Хорошо, если вы заблаговременно установили инструмент удаленного управления - тогда развертывание пройдет быстрее.

Киберсейф Межсетевой экран самостоятельно создает MST-файл, нужно лишь установить его на один компьютер, получить заветный MST-файл и указать его в групповой политике. О том, как это сделать, можно прочитать в статье «Разграничение информационных систем при защите персональных данных» . За какие-то полсача (а то и меньше) вы сможете развернуть межсетевой экран на все компьютеры сети.

Именно поэтому Киберсейф Межсетевой экран получает оценку 5, а его конкуренты - 3 (спасибо хоть инсталляторы выполнены в формате MSI, а не.exe).

Продукт Оценка
VipNet Office Firewall
Киберсейф Межсетевой экран
TrustAccess

Удобство использования

Брандмауэр - это не текстовый процессор. Это довольно специфический программный продукт, использование которого сводится к принципу «установил, настроил, забыл». С одной стороны, удобство использования - второстепенный фактор. Например, iptables в Linux нельзя назвать удобным, но ведь им же пользуются? С другой - чем удобнее брандмауэр, тем быстрее получится защитить ИСПДн и выполнять некоторые функции по ее администрированию.

Что ж, давайте посмотрим, насколько удобны рассматриваемые межсетевые экраны в процессе создания и защиты ИСПДн.

Начнем мы с VipNet Office Firewall, который, на наш взгляд, не очень удобный. Выделить компьютеры в группы можно только по IP-адресам (рис. 2). Другими словами, есть привязка к IP-адресам и вам нужно или выделять различные ИСПДн в разные подсети, или же разбивать одну подсеть на диапазоны IP-адресов. Например, есть три ИСПДн: Управление, Бухгалтерия, IT. Вам нужно настроить DHCP-сервер так, чтобы компьютерам из группы Управление «раздавались» IP-адреса из диапазона 192.168.1.10 - 192.168.1.20, Бухгалтерия 192.168.1.21 - 192.168.1.31 и т.д. Это не очень удобно. Именно за это с VipNet Office Firewall будет снят один балл.


Рис. 2. При создании групп компьютеров наблюдается явная привязка к IP-адресу

В межсетевом экране Киберсейф, наоборот, нет никакой привязки к IP-адресу. Компьютеры, входящие в состав группы, могут находиться в разных подсетях, в разных диапазонах одной подсети и даже находиться за пределами сети. Посмотрите на рис. 3. Филиалы компании расположены в разных городах (Ростов, Новороссийск и т.д.). Создать группы очень просто - достаточно перетащить имена компьютеров в нужную группу и нажать кнопку Применить . После этого можно нажать кнопку Установить правила для формирования специфических для каждой группы правил.


Рис. 3. Управление группами в Киберсейф Межсетевой экран

Что касается TrustAccess, то нужно отметить тесную интеграцию с самой системой. В конфигурацию брандмауэра импортируются уже созданные системные группы пользователей и компьютеров, что облегчает управление межсетевым экраном в среде ActiveDirectory. Вы можете не создавать ИСПДн в самом брандмауэре, а использовать уже имеющиеся группы компьютеров в домене Active Directory.


Рис. 4. Группы пользователей и компьютеров (TrustAccess)

Все три брандмауэра позволяют создавать так называемые расписания, благодаря которым администратор может настроить прохождение пакетов по расписанию, например, запретить доступ к Интернету в нерабочее время. В VipNet Office Firewall расписания создаются в разделе Расписания (рис. 5), а в Киберсейф Межсетевой экран время работы правила задается при определении самого правила (рис. 6).


Рис. 5. Расписания в VipNet Office Firewall


Рис. 6. Время работы правила в Киберсейф Межсетевой экран


Рис. 7. Расписание в TrustAccess

Все три брандмауэра предоставляют очень удобные средства для создания самих правил. А TrustAccess еще и предоставляет удобный мастер создания правила.


Рис. 8. Создание правила в TrustAccess

Взглянем на еще одну особенность - инструменты для получения отчетов (журналов, логов). В TrustAccess для сбора отчетов и информации о событиях нужно установить сервер событий (EventServer) и сервер отчетов (ReportServer). Не то, что это недостаток, а скорее особенность («feature», как говорил Билл Гейтс) данного брандмауэра. Что касается, межсетевых экранов Киберсейф и VipNet Office, то оба брандмауэра предоставляют удобные средства просмотра журнала IP-пакетов. Разница лишь в том, что у Киберсейф Межсетевой экран сначала отображаются все пакеты, и вы можете отфильтровать нужные, используя возможности встроенного в заголовок таблицы фильтра (рис. 9). А в VipNet Office Firewall сначала нужно установить фильтры, а потом уже просмотреть результат.


Рис. 9. Управление журналом IP-пакетов в Киберсейф Межсетевой экран


Рис. 10. Управление журналом IP-пакетов в VipNet Office Firewall

С межсетевого экрана Киберсейф пришлось снять 0.5 балла за отсутствие функции экспорта журнала в Excel или HTML. Функция далеко не критическая, но иногда полезно просто и быстро экспортировать из журнала несколько строк, например, для «разбора полетов».

Итак, результаты этого раздела:

Продукт Оценка
VipNet Office Firewall
Киберсейф Межсетевой экран
TrustAccess

Стоимость

Обойти финансовую сторону вопроса просто невозможно, ведь часто она становится решающей при выборе того или иного продукта. Так, стоимость одной лицензии ViPNet Office Firewall 4.1 (лицензия на 1 год на 1 компьютер) составляет 15 710 р. А стоимость лицензии на 1 сервер и 5 рабочих станций TrustAccess обойдется в 23 925 р. Со стоимостью данных программных продуктов вы сможете ознакомиться по ссылкам в конце статьи.

Запомните эти две цифры 15710 р. за один ПК (в год) и 23 925 р. за 1 сервер и 5 ПК (в год). А теперь внимание: за эти деньги можно купить лицензию на 25 узлов Киберсейф Межсетевой экран (15178 р.) или немного добавить и будет вполне достаточно на лицензию на 50 узлов (24025 р.). Но самое главное в этом продукте - это не стоимость. Самое главное - это срок действия лицензии и технической поддержки. Лицензия на Киберсейф Межсетевой экран - без срока действия, как и техническая поддержка. То есть вы платите один раз и получаете программный продукт с пожизненной лицензией и технической поддержкой.

Продукт Оценка
VipNet Office Firewall
Киберсейф Межсетевой экран
TrustAccess

Срок поставки

По нашему опыту время поставки VipNet Office Firewall составляет около 2-3 недель после обращения в ОАО «Инфотекс». Честно говоря, это довольно долго, учитывая, что покупается программный продукт, а не ПАК.
Время поставки TrustAccess, если заказывать через «Софтлайн», составляет от 1 дня. Более реальный срок - 3 дня, учитывая некоторую задержку «Софтлайна». Хотя могут поставить и за 1 день, здесь все зависит от загруженности «Софтлайна». Опять-таки - это личный опыт, реальный срок конкретному заказчику может отличаться. Но в любом случае срок поставки довольно низкий, что нельзя не отметить.

Что касается программного продукта КиберСейф Межсетевой экран, то производитель гарантирует поставку электронной версии в течение 15 минут после оплаты.

Продукт Оценка
VipNet Office Firewall
Киберсейф Межсетевой экран
TrustAccess

Что выбрать?

Если ориентироваться только по стоимости продукта и технической поддержки, то выбор очевиден - Киберсейф Межсетевой экран. Киберсейф Межсетевой экран обладает оптимальным соотношением функционал/цена. С другой стороны, если вам нужна поддержка Secret Net, то нужно смотреть в сторону TrustAccess. А вот VipNet Office Firewall можем порекомендовать разве что как хороший персональный брандмауэр, но для этих целей существует множество других и к тому же бесплатных решений.

Обзор выполнен специалистами
компании-интегратора ООО «ДОРФ»

Похожие публикации