Мощность через напряжение и сопротивление. Мощность электрического тока. Это просто

При проектировании электрооборудования и расчёте кабелей и пусковой и защитной аппаратуры важно правильно рассчитать мощность и ток электроаппаратуры. В этой статье рассказывается о том, как найти эти параметры.

Что такое мощность

При работе электронагревателя или электродвигателя они выделяют тепло или выполняют механическую работу, единица измерения которой – 1 джоуль (Дж).

Одна из основных характеристик электрооборудования – мощность, показывающая количество тепла или произведённой работы за 1 секунду и выражающаяся в ваттах (Вт):

1Вт=1Дж/1с.

В электротехнике 1Вт выделяется при прохождении тока в 1А при напряжении 1В:

Согласно закону Ома, найти мощность можно также, зная сопротивление нагрузки и ток или напряжение:

P=U*I=I*I*R=(U*U)/R, где:

  • P (Вт) – мощность электроприбора;
  • I (А) – ток, протекающий через устройство;
  • R (Ом) – сопротивление аппарата;
  • U (В) – напряжение.

Номинальной называют мощность при номинальных параметрах сети и номинальной нагрузке на валу электродвигателя.

Для того чтобы узнать количество электричества, потреблённого за весь период работы, её необходимо умножить на время, которое аппарат работал. Поучившаяся величина измеряется в кВт*ч.

Расчёт в сетях переменного и постоянного напряжения

Электросеть, питающая электроприборы, может быть трёх видов:

  • постоянное напряжение;
  • переменное однофазное;
  • переменное трёхфазное.

Для каждого вида при расчётах используется своя формула мощности.

Расчёт в сети постоянного напряжения

Самые простые расчёты производятся в электросети постоянного тока. Мощность электроаппаратов, подключённых к ней, прямо пропорциональна току и напряжению и, чтобы найти её, используется формула:

Например, в электродвигателе с номинальным током 4,55А, подключённом к электросети 220В, мощность равна 1000 Ватт, или 1кВт.

И, наоборот, при известных напряжении сети и мощности ток рассчитывается по формуле:

Однофазные нагрузки

В сети, в которой отсутствуют электродвигатели, а также в бытовой электросети можно пользоваться формулами для сети постоянного напряжения.

Интересно. В бытовой электросети 220В ток можно вычислить по упрощённой формуле: 1кВт=5А.

Мощность переменного тока вычисляется сложнее. Эти аппараты, кроме активной, потребляют реактивную энергию, и формула:

показывает полную потребляемую энергию устройства. Для того чтобы узнать активную составляющую, нужно учесть cosφ – параметр, показывающий долю активной энергии в полной:

Ракт=Робщ*cosφ=U*I*cosφ.

Соответственно, Робщ=Ракт/cosφ.

Например, в электродвигателе с Ракт 1кВт и cosφ 0,7 полная энергия, потребляемая устройством, будет 1,43кВт, и ток – 6,5А.

Расчет в трехфазной сети

Трёхфазную электросеть можно представить как три однофазных сети. Однако в однофазных сетях используется понятие «фазное напряжение» (Uф), измеряемое между нулевым и фазным проводами, в сети 0,4кВ, равное 220В. В трёхфазных электросетях вместо «фазного» применяется понятие «линейное напряжение» (Uлин), измеряемое между линейными проводами и в сети 0,4кВ, равное 380В:

Uлин=Uф√3.

Поэтому формула для активной нагрузки, например, электрокотла, выглядит так:

При определении мощности электродвигателя необходимо учитывать cosφ, выражение приобретает следующий вид:

P=U*I*√3*cosφ.

На практике этот параметр обычно известен, а узнать необходимо ток. Для этого используется следующее выражение:

I=P/(U*√3*cosφ).

Например, для электродвигателя 3кВт (3000Вт) и cosφ 0,7 расчёт получается таким:

I=3000/(380*√3*0,7)=5,8А.

Интересно. Вместо вычислений можно считать, что в трёхфазной сети 380В 1кВт соответствует 2А.

Лошадиная сила

В некоторых случаях при определении мощности автомобилей пользуются устаревшей единицей измерения «лошадиная сила».

Эту единицу ввел в обращение Джеймс Уайт, в честь которого названа единица мощности 1 Ватт, в 1789 году. Его нанял один пивовар для постройки парового двигателя для насоса, способного заменить лошадь. Чтобы определить, какой необходим двигатель, взяли лошадь и запрягли её качать воду.

Считается, что пивовар взял самую сильную лошадь и заставил её работать без отдыха. Реальная сила лошади меньше в 1,5 раза.

При проектировании любых электрических цепей выполняется расчет мощности. На его основе производится выбор основных элементов и вычисляется допустимая нагрузка. Если расчет для цепи постоянного тока не представляет сложности (в соответствии с законом Ома, необходимо умножить силу тока на напряжение – Р=U*I), то с вычислением мощности переменного тока – не все так просто. Для объяснения потребуется обратиться к основам электротехники, не вдаваясь в подробности, приведем краткое изложение основных тезисов.

Полная мощность и ее составляющие

В цепях переменного тока расчет мощности ведется с учетом законов синусоидальных изменений напряжения и тока. В связи с этим введено понятие полной мощности (S), которая включает в себя две составляющие: реактивную (Q) и активную (P). Графическое описание этих величин можно сделать через треугольник мощностей (см. рис.1).

Под активной составляющей (Р) подразумевается мощность полезной нагрузки (безвозвратное преобразование электроэнергии в тепло, свет и т.д.). Измеряется данная величина в ваттах (Вт), на бытовом уровне принято вести расчет в киловаттах (кВт), в производственной сфере – мегаваттах (мВт).

Реактивная составляющая (Q) описывает емкостную и индуктивную электронагрузку в цепи переменного тока, единица измерения этой величины Вар.

Рис. 1. Треугольник мощностей (А) и напряжений (В)

В соответствии с графическим представлением, соотношения в треугольнике мощностей можно описать с применением элементарных тригонометрических тождеств, что дает возможность использовать следующие формулы :

  • S = √P 2 +Q 2 , – для полной мощности;
  • и Q = U*I*cos⁡ φ , и P = U*I*sin φ – для реактивной и активной составляющих.

Эти расчеты применимы для однофазной сети (например, бытовой 220 В), для вычисления мощности трехфазной сети (380 В) в формулы необходимо добавить множитель – √3 (при симметричной нагрузке) или суммировать мощности всех фаз (если нагрузка несимметрична).

Для лучшего понимания процесса воздействия составляющих полной мощности давайте рассмотрим «чистое» проявление нагрузки в активном, индуктивном и емкостном виде.

Активная нагрузка

Возьмем гипотетическую схему, в которой используется «чистое» активное сопротивление и соответствующий источник переменного напряжения. Графическое описание работы такой цепи продемонстрировано на рисунке 2, где отображаются основные параметры для определенного временного диапазона (t).


Рисунок 2. Мощность идеальной активной нагрузки

Мы можем увидеть, что напряжение и ток синхронизированы как по фазе, так и частоте, мощность же имеет удвоенную частоту. Обратите внимание, что направление этой величины положительное, и она постоянно возрастает.

Емкостная нагрузка

Как видно на рисунке 3, график характеристик емкостной нагрузки несколько отличается от активной.


Рисунок 3. График идеальной емкостной нагрузки

Частота колебаний емкостной мощности вдвое превосходит частоту синусоиды изменения напряжения. Что касается суммарного значения этого параметра, в течение одного периода гармоники оно равно нулю. При этом увеличения энергии (∆W) также не наблюдается. Такой результат указывает, что ее перемещение происходит в обоих направлениях цепи. То есть, когда увеличивается напряжение, происходит накопление заряда в емкости. При наступлении отрицательного полупериода накопленный заряд разряжается в контур цепи.

В процессе накопления энергии в емкости нагрузки и последующего разряда не производится полезной работы.

Индуктивная нагрузка

Представленный ниже график демонстрирует характер «чистой» индуктивной нагрузки. Как видим, изменилось только направление мощности, что касается наращения, оно равно нулю.


Негативное воздействие реактивной нагрузки

В приведенных выше примерах рассматривались варианты, где присутствует «чистая» реактивная нагрузка. Фактор воздействия активного сопротивления в расчет не принимался. В таких условиях реактивное воздействие равно нулю, а значит, можно не принимать его во внимание. Как вы понимаете, в реальных условиях такое невозможно. Даже, если гипотетически такая нагрузка бы существовала, нельзя исключать сопротивление медных или алюминиевых жил кабеля, необходимого для ее подключения к источнику питания.

Реактивная составляющая может проявляться в виде нагрева активных компонентов цепи, например, двигателя, трансформатора, соединительных проводов, питающего кабеля и т.д. На это тратится определенное количество энергии, что приводит к снижению основных характеристик.

Реактивная мощность воздействует на цепь следующим образом:

  • не производит ни какой полезной работы;
  • вызывает серьезные потери и нештатные нагрузки на электроприборы;
  • может спровоцировать возникновение серьезной аварии.

Именно по этому, производя соответствующие вычисления для электроцепи, нельзя исключать фактор влияния индуктивной и емкостной нагрузки и, если необходимо, предусматривать использование технических систем для ее компенсации.

Расчет потребляемой мощности

В быту часто приходится сталкиваться с вычислением потребляемой мощности, например, для проверки допустимой нагрузки на проводку перед подключением ресурсоемкого электропотребителя (кондиционера, бойлера, электрической плиты и т.д.). Также в таком расчете есть необходимость при выборе защитных автоматов для распределительного щита, через который выполняется подключение квартиры к электроснабжению.

В таких случаях расчет мощности по току и напряжению делать не обязательно, достаточно просуммировать потребляемую энергию всех приборов, которые могут быть включены одновременно. Не связываясь с расчетами, узнать эту величину для каждого устройства можно тремя способами:



При расчетах следует учитывать, что пусковая мощность некоторых электроприборов может существенно отличаться от номинальной. Для бытовых устройств этот параметр практически никогда не указывается в технической документации, поэтому необходимо обратиться к соответствующей таблице, где содержатся средние значения параметров стартовой мощности для различных приборов (желательно выбирать максимальную величину).

Активная мощность (P)

Другими словами активную мощность можно назвать: фактическая, настоящая, полезная, реальная мощность. В цепи постоянного тока мощность, питающая нагрузку постоянного тока, определяется как простое произведение напряжения на нагрузке и протекающего тока, то есть

потому что в цепи постоянного тока нет понятия фазового угла между током и напряжением. Другими словами, в цепи постоянного тока нет никакого коэффициента мощности.

Но при синусоидальных сигналах, то есть в цепях переменного тока, ситуация сложнее из-за наличия разности фаз между током и напряжением. Поэтому среднее значение мощности (активная мощность), которая в действительности питает нагрузку, определяется как:

В цепи переменного тока, если она чисто активная (резистивная), формула для мощности та же самая, что и для постоянного тока: P = U I.

Формулы для активной мощности

P = U I - в цепях постоянного тока

P = U I cosθ - в однофазных цепях переменного тока

P = √3 U L I L cosθ - в трёхфазных цепях переменного тока

P = 3 U Ph I Ph cosθ

P = √ (S 2 – Q 2) или

P =√ (ВА 2 – вар 2) или

Активная мощность = √ (Полная мощность 2 – Реактивная мощность 2) или

кВт = √ (кВА 2 – квар 2)

Реактивная мощность (Q)

Также её мощно было бы назвать бесполезной или безваттной мощностью.

Мощность, которая постоянно перетекает туда и обратно между источником и нагрузкой, известна как реактивная (Q).

Реактивной называется мощность, которая потребляется и затем возвращается нагрузкой из-за её реактивных свойств. Единицей измерения активной мощности является ватт, 1 Вт = 1 В х 1 А. Энергия реактивной мощности сначала накапливается, а затем высвобождается в виде магнитного поля или электрического поля в случае, соответственно, индуктивности или конденсатора.

Реактивная мощность определяется, как

и может быть положительной (+Ue) для индуктивной нагрузки и отрицательной (-Ue) для емкостной нагрузки.

Единицей измерения реактивной мощности является вольт-ампер реактивный (вар): 1 вар = 1 В х 1 А. Проще говоря, единица реактивной мощности определяет величину магнитного или электрического поля, произведённого 1 В х 1 А.

Формулы для реактивной мощности

Реактивная мощность = √ (Полная мощность 2 – Активная мощность 2)

вар =√ (ВА 2 – P 2)

квар = √ (кВА 2 – кВт 2)

Полная мощность (S)

Полная мощность – это произведение напряжения и тока при игнорировании фазового угла между ними. Вся мощность в сети переменного тока (рассеиваемая и поглощаемая/возвращаемая) является полной.

Комбинация реактивной и активной мощностей называется полной мощностью. Произведение действующего значения напряжения на действующее значение тока в цепи переменного тока называется полной мощностью.

Она является произведением значений напряжения и тока без учёта фазового угла. Единицей измерения полной мощности (S) является ВА, 1 ВА = 1 В х 1 А. Если цепь чисто активная, полная мощность равна активной мощности, а в индуктивной или ёмкостной схеме (при наличии реактивного сопротивления) полная мощность больше активной мощности.

Формула для полной мощности

Полная мощность = √ (Активная мощность 2 + Реактивная мощность 2)

kUA = √(kW 2 + kUAR 2)

Следует заметить, что:

  • резистор потребляет активную мощность и отдаёт её в форме тепла и света.
  • индуктивность потребляет реактивную мощность и отдаёт её в форме магнитного поля.
  • конденсатор потребляет реактивную мощность и отдаёт её в форме электрического поля.

Электрическая энергия. В природе и технике непрерывно происходят процессы превращения энергии из одного вида в другой (рис. 30). В источниках электрической энергии различные виды энергии превращаются в электрическую энергию. Например, в электрических генераторах 1, приводимых во вращение каким-либо механизмом, происходит превращение в электрическую энергию механической, в термогенераторах 2 - тепловой, в аккумуляторах 9 при их разряде и гальванических элементах 10 - химической, в фотоэлементах 11 - лучистой.
Приемники электрической энергии, наоборот, электрическую энергию превращают в другие виды энергии - тепловую, механическую, химическую, лучистую и пр. Например, в электродвигателях 3 электрическая энергия превращается в механическую, в электронагревательных приборах 5 - в тепловую, в электролитических ваннах 8 и аккумуляторах 7 при их заряде - в химическую, в электрических лампах 6 - в лучистую и тепловую, в антеннах 4 радиопередатчиков - в лучистую.

Мерой количества энергии является работа. Работа W, совершаемая электрическим током за время t при известном напряжении U силе тока I, равна произведению напряжения на силу тока и на время его действия:

W = UIt (29)

Работа, совершаемая электрическим током силой 1 А при напряжении 1 В в течение 1 с, принята за единицу электрической энергии. Эта единица называется джоулем (Дж). Джоуль, который называют также ватт-секундой (Вт*с), - очень маленькая единица измерения, поэтому на практике для измерения электрической энергии приняты более крупные единицы - ватт-час (1 Вт*ч = 3600 Дж), киловатт-час (1 кВт*ч = 1000 Вт*ч = 3,6*10 6 Дж), мегаватт-час (1 МВт*ч=1000 кВт*ч=3,6*10 9 Дж).

Электрическая мощность. Энергия, получаемая приемником или отдаваемая источником тока в течение 1 с, называется мощностью. Мощность Р при неизменных значениях U и I равна произведению напряжения U на силу тока I:

P = UI (30)

Используя закон Ома для определения силы тока и напряжения в зависимости от сопротивления R и проводимости G, можно получить и другие выражения для мощности. Если заменить в формуле (30) напряжение U=IR или силу тока I=U/R=UG, то получим

P = I 2 R (31)

P = U 2 /R = U 2 G (32)

Следовательно, электрическая мощность равна произведению квадрата силы тока на сопротивление, или электрическая мощность квадрату напряжения, поделенному на сопротивление, либо квадрату напряжения, умноженному на проводимость.

Мощность, которая создается силой тока 1 А при напряжении 1 В, принята за единицу измерения мощности и называется ватт (Вт). В технике мощность измеряют более крупными единицами: киловаттами (1 кВт =1000 Вт) и мегаваттами (1 МВт=1 000 000 Вт).

Потери энергии и коэффициент полезного действия. При превращении электрической энергии в другие виды энергии или наоборот не вся энергия превращается в требуемый вид энергии, часть ее непроизводительно затрачивается (теряется) на преодоление трения в подшипниках машин, нагревание проводов и пр. Эти потери энергии неизбежны в любой машине и любом аппарате.
Отношение мощности, отдаваемой источником или приемником электрической энергии, к получаемой им мощности, называется коэффициентом полезного действия источника или приемника. Коэффициент полезного действия (к. п. д.)

? = P 2 /P 1 = P 2 /(P 2 + ?P) (33)

Р 2 - отдаваемая (полезная) мощность;
Р 1 - получаемая мощность;
?Р - потери мощности.

К. п. д. всегда меньше единицы, так как в любой машине и любом аппарате имеются потери энергии. Иногда к. п. д. выражают в процентах. Так, тяговые двигатели электровозов и тепловозов имеют к. п. д. 86-92 %, мощные трансформаторы - 96-98 %, тяговые подстанции - 94-96 %, контактная сеть электрифицированных железных дорог - около 90 %, генераторы тепловозов - 92-94 %.
Рассмотрим в качестве примера распределение энергии в электрической цепи (рис. 31). Генератор 1, питающий эту цепь, получает от первичного двигателя 2 (например, дизеля) механическую мощность Р mx = 28,9 кВт, а отдает электрическую мощность Р эл = 26 кВт (2,9 кВт составляют потери мощности в генераторе). Поэтому он имеет к. п. д. ? ген = Р эл /Р mx = 26/28,9 = 0,9.

Мощность Р эл = 26 кВт, отдаваемая генератором, расходуется на питание электрических ламп (6 кВт), на нагрев электрических плиток (7,2 кВт) и на питание электродвигателя (10,8 кВт). Часть мощности?P пр = 2 кВт теряется на бесполезный нагрев проводов, соединяющих генератор с потребителями.

В каждом приемнике электрической энергии также имеют место потери мощности. В электрическом двигателе 3 потери мощности составляют 0,8 кВт (он получает из сети мощность 10,8 кВт, а отдает только 10 кВт), поэтому к. п. д. ?дв = 10/10,8 = 0,925. Из мощности 6 кВт, полученной лампами, лишь незначительная часть идет на Создание лучистой энергии, большая часть ее бесполезно рассеивается в виде тепла. В электрической плитке на нагрев пищи расходуется не вся полученная мощность 7,2 кВт, так как часть созданного ею тепла рассеивается в окружающем пространстве. При рассмотрении электрических цепей наряду с определением токов и напряжений, действующих на отдельных участках, необходимо определять и передаваемую по ним мощность. При этом должен соблюдаться так называемый энергетический баланс мощностей. Это означает, что мощность, получаемая каким-либо устройством (источником тока или потребителем) или участком электрической цепи, должна быть равна сумме отдаваемой ими мощности и потерь мощности, которые возникают в данном устройстве или участке цепи.

Содержание:

Любой из элементов электрической сети является материальным объектом определенной конструкции. Но его особенность состоит в двойственном состоянии. Он может быть как под электрической нагрузкой, так и обесточен. Если электрического подключения нет, целостности объекта ничто не угрожает. Но при присоединении к источнику электропитания, то есть при появлении напряжения (U) и электротока, неправильная конструкция элемента электросети может стать для него фатальной, если напряжение и электроток приведут к выделению тепла.

Отличия мощности при постоянном и переменном напряжении

Наиболее простым получается расчет мощности электрических цепей на постоянном электротоке. Для их участков справедлив закон Ома, в котором задействовано только приложенное U, и сопротивление. Чтобы рассчитать силу тока I, U делится на сопротивление R:

причем искомая сила тока именуется амперами.

А поскольку электрическая мощность Р для такого случая - это произведение U и силы электротока, она так же легко, как и электроток, вычисляется по формуле:

причем искомая мощность нагрузки именуется ваттами.

Все компоненты этих двух формул характерны для постоянного электротока и называются активными. Напоминаем нашим читателям, что закон Ома, позволяющий выполнить расчет силы тока, весьма многообразен по своему отображению. Его формулы учитывают особенности физических процессов, соответствующих природе электричества. А при постоянном и переменном U они протекают существенно отличаясь. Трансформатор на постоянном U - это абсолютно бесполезное устройство. Также как синхронные и асинхронные движки.

Принцип их функционирования заключен в изменяющемся магнитном поле, создаваемом элементами электрических цепей, обладающими индуктивностью. А такое поле появляется только как следствие переменного U и соответствующего ему переменного тока. Но электричеству свойственно также и накопление зарядов в элементах электрических цепей. Это явление называется электрической емкостью и лежит в основе конструкции конденсаторов. Параметры, связанные с индуктивностью и емкостью, называют реактивными.

Расчет мощности в цепях переменного электротока

Поэтому, чтобы определить ток по мощности и напряжению как в обычной электросети 220 В, так и в любой другой, где используется переменное U, потребуется учесть несколько активных и реактивных параметров. Для этого применяется векторное исчисление. В результате отображение рассчитываемой мощности и U имеет вид треугольника. Две стороны его - это активная и реактивная составляющие, а третья - их сумма. Например, полная мощность нагрузки S, именуемая вольт-амперами.

Реактивная составляющая называется варами. Зная величины сторон для треугольников мощности и U, можно выполнить расчет тока по мощности и напряжению. Как это сделать, поясняет изображение двух треугольников, показанное далее.

Для измерения мощности применяются специальные приборы. Причем их многофункциональных моделей совсем мало. Это связано с тем, что для постоянного электротока, а также в зависимости от частоты используется соответствующий конструктивный принцип измерителя мощности. По этой причине прибор, предназначенный для измерения мощности в цепях переменного электротока промышленной частоты, на постоянном электротоке или на повышенной частоте будет показывать результат с неприемлемой погрешностью.

У большинства наших читателей выполнение того или иного вычисления с использованием величины мощности скорее всего происходит не с измеренным значением, а по паспортным данным соответствующего электроприбора. При этом можно легко рассчитать ток для определения, например, параметров электропроводки или соединительного шнура. Если U известно, а оно в основном соответствует параметрам электросети, расчет тока по мощности сводится к получению частного от деления мощности и U. Полученный таким способом расчетный ток определит сечение проводов и тепловые процессы в электрической цепи с электроприбором.

Но вполне закономерен вопрос, как рассчитать ток нагрузки при отсутствии каких-либо сведений о ней? Ответ следующий. Правильный и полный расчет тока нагрузки, запитанной переменным U, возможен на основании измеренных данных. Они должны быть получены с применением прибора, который замеряет фазовый сдвиг между U и электротоком в цепи. Это фазометр. Полный расчет мощности тока даст активную и реактивную составляющие. Они обусловлены углом φ, который показан выше на изображениях треугольников.

Используем формулы

Этот угол и характеризует фазовый сдвиг в цепях переменного U, содержащих индуктивные и емкостные элементы. Чтобы рассчитывать активные и реактивные составляющие, используются тригонометрические функции, применяющиеся в формулах. Перед тем как посчитать результат по этим формулам, надо, используя калькуляторы или таблицы Брадиса, определить sin φ и cos φ. После этого по формулам

Похожие публикации