Нейронные сети: практическое применение

Нейронная сеть представляет собой совокупность нейроподобных элементов, определенным образом соединенных друг с другом и с внешней средой с помощью связей, определяемых весовыми коэффициентами В зависимости от функций, выполняемых нейронами в сети, можно выделить три их типа

Входные нейроны, на которые подается вектор, кодирующий входное воздействие или образ внешней среды; в них обычно не осуществляется вычислительных процедур, а информация передается с входа на выход путем изменения их активации;

Выходные нейроны, выходные значения которых представляют выходы нейронной сети; преобразования в них осуществляются по выражениям (1.1) и (1.2);

Промежуточные нейроны, составляющие основу нейронных сетей, преобразования в которых выполняются также по выражениям (1.1) и (1.2).

В большинстве нейронных моделей тип нейрона связан с его расположением в сети. Если нейрон имеет только выходные связи, то это входной нейрон, если наоборот - выходной нейрон. Однако возможен случай, когда выход топологически внутреннего нейрона рассматривается как часть выхода сети. В процессе функционирования сети осуществляется преобразование входного вектора в выходной, некоторая переработка информации. Конкретный вид выполняемого сетью преобразования данных обусловливается не только характеристиками нейроподобных элементов, но и особенностями ее архитектуры, а именно топологией межнейронных связей, выбором определенных подмножеств нейроподобных элементов для ввода и вывода информации, способами обучения сети, наличием или отсутствием конкуренции между нейронами, направлением и способами управления и синхронизации передачи информации между нейронами.

С точки зрения топологии можно выделить три основных типа нейронных сетей:

Полносвязные (рис. 1.4, а);

Многослойные или слоистые (рис. 1.4, б);

Слабосвязные (с локальными связями) (рис. 1.4, в).

В полносвязных нейронных сетях каждый нейрон передает свой выходной сигнал остальным нейронам, в том числе и самому себе. Все входные сигналы подаются всем нейронам. Выходными сигналами сети могут быть все или некоторые выходные сигналы нейронов после нескольких тактов функционирования сети.

В многослойных нейронных сетях нейроны объединяются в слои. Слой содержит совокупность нейронов с едиными входными сигналами Число нейронов в слое может быть любым и не зависит от количества нейронов в других слоях. В общем случае сеть состоит из слоев, пронумерованных слева направо. Внешние входные сигналы подаются на входы нейронов входного слоя (его часто нумеруют как нулевой), а выходами сети являются выходные

Рис. 1.4. Архитектуры нейронных сетей. а - полносвязная сеть, б - многослойная сеть с последовательными связями, в - слабосвязные сети

сигналы последнего слоя. Кроме входного и выходного слоев в многослойной нейронной сети есть один или несколько скрытых слоев. Связи от выходов нейронов некоторого слоя к входам нейронов следующего слоя называются последовательными.

В свою очередь, среди многослойных нейронных сетей выделяют следующие типы.

1) Монотонные.

Это частный случай слоистых сетей с дополнительными условиями на связи и нейроны. Каждый слой кроме последнего (выходного) разбит на два блока: возбуждающий и тормозящий. Связи между блоками тоже разделяются на тормозящие и возбуждающие. Если от нейронов блока А к нейронам блока В ведут только возбуждающие связи, то это означает, что любой выходной сигнал

Рис. 1.5 Многослойная (двухслойная) сеть прямого распространения

блока является монотонной неубывающей функцией любого выходного сигнала блока А Если же эти связи только тормозящие, то любой выходной сигнал блока В является невозрастающей функцией любого выходного сигнала блока А Для нейронов монотонных сетей необходима монотонная зависимость выходного сигнала нейрона от параметров входных сигналов

2) Сети без обратных связей. В таких сетях нейроны входного слоя получают входные сигналы, преобразуют их и передают нейронам первого скрытого слоя, и так далее вплоть до выходного, который выдает сигналы для интерпретатора и пользователя. Если не оговорено противное, то каждый выходной сигнал слоя подастся на вход всех нейронов слоя; однако возможен вариант соединения слоя с произвольным слоем

Среди многослойных сетей без обратных связей различают полносвязанные (выход каждого нейрона слоя связан с входом каждого нейрона слоя) и частично полносвязанные. Классическим вариантом слоистых сетей являются полносвязанные сети прямого распространения (рис. 1.5).

3) Сети с обратными связями В сетях с обратными связями информация с последующих слоев передается на предыдущие. Среди них, в свою очередь, выделяют следующие:

Слоисто-циклические, отличающиеся тем, что слои замкнуты в кольцо, последний слой передает свои выходные сигналы первому; все слои равноправны и могут как получать входные сигналы, так и выдавать выходные;

Слоисто-полносвязанные состоят из слоев, каждый из которых представляет собой полносвязную сеть, а сигналы передаются как от слоя к слою, так и внутри слоя; в каждом слое цикл работы распадается на три части, прием сигналов с предыдущего слоя, обмен сигналами внутри слоя, выработка выходного сигнала и передача к последующему слою,

Полносвязанно-слоистые, по своей структуре аналогичные слоисто-полносвязанным, но функционирующим по-другому: в них не разделяются фазы обмена внутри слоя и передачи следующему, на каждом такте нейроны всех слоев принимают сигналы от нейронов как своего слоя, так и последующих

В качестве примера сетей с обратными связями на рис. 1.6 представлены частично-рекуррентные сети Элмана и Жордана.

Рис. 1.6 Частично-рекуррентные сети а - Элмана, б - Жордана

В слабосвязных нейронных сетях нейроны располагаются в узлах прямоугольной или гексагональной решетки Каждый нейрон связан с четырьмя (окрестность фон Неймана), шестью (окрестность Голея) или восемью (окрестность Мура) своими ближайшими соседями.

Известные нейронные сети можно разделить по типам структур нейронов на гомогенные (однородные) и гетерогенные. Гомогенные сети состоят из нейронов одного типа с единой функцией активации, а в гетерогенную сеть входят нейроны с различными функциями активации.

Существуют бинарные и аналоговые сети. Первые из них оперируют только двоичными сигналами, и выход каждого нейрона может принимать значение либо логического ноля (заторможенное состояние) либо логической единицы (возбужденное состояние).

Еще одна классификация делит нейронные сети на синхронные и асинхронные. В первом случае в каждый момент времени лишь один нейрон меняет свое состояние, во втором - состояние меняется сразу у целой группы нейронов, как правило, у всего слоя. Алгоритмически ход времени в нейронных сетях задается итерационным выполнением однотипных действий над нейронами Далее будут рассматриваться только синхронные сети

Сети можно классифицировать также по числу слоев. Теоретически число слоев и число нейронов в каждом слое может быть произвольным, однако фактически оно ограничено ресурсами компьютера или специализированных микросхем, на которых обычно реализуется нейронная сеть. Чем сложнее сеть, тем более сложные задачи она может решать.

Выбор структуры нейронной сети осуществляется в соответствии с особенностями и сложностью задачи. Для решения отдельных типов задач уже существуют оптимальные конфигурации, описанные в приложении. Если же задача не может быть сведена ни к одному из известных типов, приходится решать сложную проблему синтеза новой конфигурации. При этом необходимо руководствоваться следующими основными правилами:

Возможности сети возрастают с увеличением числа нейронов сети, плотности связей между ними и числом слоев;

Введение обратных связей наряду с увеличением возможностей сети поднимает вопрос о динамической устойчивости сети;

Сложность алгоритмов функционирования сети, введение нескольких типов синапсов способствует усилению мощности нейронной сети.

Вопрос о необходимых и достаточных свойствах сети для решения задач того или иного рода представляет собой целое направление нейрокомпьютерной науки. Так как проблема синтеза нейронной сети сильно зависит от решаемой задачи, дать общие подробные рекомендации затруднительно В большинстве случаев оптимальный вариант получается на основе интуитивного подбора, хотя в литературе приведены доказательства того, что для любого алгоритма существует нейронная сеть, которая может его реализовать. Остановимся на этом подробнее.

Многие задачи распознавания образов (зрительных, речевых), выполнения функциональных преобразований при обработке сигналов, управления, прогнозирования, идентификации сложных систем, сводятся к следующей математической постановке. Необходимо построить такое отображение чтобы на каждый возможный входной сигнал X формировался правильный выходной сигнал У. Отображение задается конечным набором пар («вход», «известный выход»). Число этих пар (обучающих примеров) существенно меньше общего числа возможных сочетаний значений входных и выходных сигналов. Совокупность всех обучающих примеров носит название обучающей выборки.

В задачах распознавания образов X - некоторое представление образа (изображение, вектор), У - номер класса, к которому принадлежит входной образ.

В задачах управления X - набор контролируемых параметров управляемого объекта, Y - код, определяющий управляющее воздействие, соответствующее текущим значениям контролируемых параметров.

В задачах прогнозирования в качестве входных сигналов используются временные ряды, представляющие значения контролируемых переменных на некотором интервале времени. Выходной сигнал - множество переменных, которое является подмножеством переменных входного сигнала.

При идентификации X и Y представляют входные и выходные сигналы системы соответственно.

Вообще говоря, большая часть прикладных задач может быть сведена к реализации некоторого сложного функционального многомерного преобразования.

В результате отображения необходимо обеспечить формирование правильных выходных сигналов в соответствии:

Со всеми примерами обучающей выборки;

Со всеми возможными входными сигналами, которые не вошли в обучающую выборку.

Второе требование в значительной степени усложняет задачу формирования обучающей выборки В общем виде эта задача в настоящее время еще не решена однако во всех известных случаях может быть найдено частное решение

Можно провести следующую классификацию нейронных сетей:

Характер обучения

Классификация нейронных сетей по характеру обучения делит их на:

  • нейронные сети, использующие обучение с учителем;
  • нейронные сети, использующие обучение без учителя.

Рассмотрим это подробнее.

Нейронные сети, использующие обучение с учителем. Обучение с учителем предполагает, что для каждого входного вектора существует целевой вектор, представляющий собой требуемый выход. Вместе они называются обучающей парой. Обычно сеть обучается на некотором числе таких обучающих пар. Предъявляется выходной вектор, вычисляется выход сети и сравнивается с соответствующим целевым вектором. Далее веса изменяются в соответствии с алгоритмом, стремящимся минимизировать ошибку. Векторы обучающего множества предъявляются последовательно, вычисляются ошибки и веса подстраиваются для каждого вектора до тех пор, пока ошибка по всему обучающему массиву не достигнет приемлемого уровня.

Нейронные сети, использующие обучение без учителя. Обучение без учителя является намного более правдоподобной моделью обучения с точки зрения биологических корней искусственных нейронных сетей. Развитая Кохоненом и многими другими, она не нуждается в целевом векторе для выходов и, следовательно, не требует сравнения с предопределенными идеальными ответами. Обучающее множество состоит лишь из входных векторов. Обучающий алгоритм подстраивает веса сети так, чтобы получались согласованные выходные векторы, т. е. чтобы предъявление достаточно близких входных векторов давало одинаковые выходы. Процесс обучения, следовательно, выделяет статистические свойства обучающего множества и группирует сходные векторы в классы.

Настройка весов

Тип входной информации

  • аналоговая – входная информация представлена в форме действительных чисел;
  • двоичная – вся входная информация в таких сетях представляется в виде нулей и единиц.

Применяемая модель нейронной сети

Сети прямого распространения – все связи направлены строго от входных нейронов к выходным. К таким сетям относятся, например: простейший персептрон (разработанный Розенблаттом) и многослойный персептрон.

Реккурентные нейронные сети – сигнал с выходных нейронов или нейронов скрытого слоя частично передается обратно на входы нейронов входного слоя.

Радиально базисные функции – вид нейронной сети, имеющий скрытый слой из радиальных элементов и выходной слой из линейных элементов. Сети этого типа довольно компактны и быстро обучаются. Предложены в работах Broomhead and Lowe (1988) и Moody and Darkin (1989). Радиально базисная сеть обладает следующими особенностями: один скрытый слой, только нейроны скрытого слоя имеют нелинейную активационную функцию и синаптические веса входного и скрытого слоев равны единицы.

Самоорганизующиеся карты или Сети Кохонена – такой класс сетей, как правило, обучается без учителя и успешно применяется в задачах распознавания. Сети такого класса способны выявлять новизну во входных данных: если после обучения сеть встретится с набором данных, непохожим ни на один из известных образцов, то она не сможет классифицировать такой набор и тем самым выявит его новизну. Сеть Кохонена имеет всего два слоя: входной и выходной, составленный из радиальных элементов.

Лекция №4

Топология нейронных сетей.

Нейронные сети, с точки зрения топологического раздела, можно разделить на 3 типа:

1.Полносвязанные сети.

Искусственная нейронная сеть, каждый нейрон передает свой выходной сигнал остальным нейронам и себе. Все входные сигналы передаются всем нейронам. В качестве выходных сигналов сети могут быть все или несколько выходных нейронов, после определенного количества тактов функционирования сети.

2. Многослойные сети (слоистые).

Состоят из нейронов объеденных в сети, в слое содержится совокупность нейронов с едиными выходными сигналами. При этом количество слоев и число нейронов в каждом слое может быть произвольным, и оно не связанно заранее с количеством нейронов в других слоях. Однако оно ограничено ресурсами ПК или специализированной микросхемы, на которых обычно реализуется нейронная сеть.

Если сеть состоит из Q слоев, то они нумеруются с лева направо. Внешние входные сигналы накладываются на входы первого слоя, при этом входной слой часто нумеруется как нулевой слой и суммирование, и преобразование сигналов здесь не производится.

Выходами сети являются выходные сигналы последнего слоя, кроме входного и выходного слоев в многослойной нейронной сети существует один или несколько промежуточных слоев, называемых скрытыми слоями.

Нейронная сеть со скрытыми слоями позволяет выделять глобальные связи данных за счет наличия дополнительных синоптических связей и повышения уровня взаимодействия нейронов.

3.Слабосвзяные сети.

Многослойные нейронные сети подразделяются на следующие типы:

  1. Монотонные нейронные сети.

Это нейронные сети представляющие собой частный случай многослойных сетей с дополнительными условиями на связи и элементы. Каждый слой сети кроме выходного разделяется на 2 блока: А ) Возбуждающий Б ) Тормозящий.

Связи между блоками также разделяются на тормозящие и возбуждающие. Допусти от блока А к блоку Б идут только возбуждающие связи, это означает, что любой выходной сигнал блока Б является монотонной неубывающей функцией любого выходного сигнала блока А , если же эти связи являются только тормозящими, то любой выходной сигнал блокаБ является монотонно невозрастающей функцией любого выходного сигнала блока А . Важно что для элементов монотонных сетей нужна монотонная зависимость выходного сигнала элемента от параметров входных сигналов.

2. Нейронные сети без обратных связей

В этих сетях нейроны входного слоя, получив входные сигналы, преобразуют их и передают нейрону первого скрытого слоя, далее срабатывает первый скрытый слой и так далее, до Q-го слоя, который выдаёт выходные сигналы.



Классическим вариантом многослойных сетей являются сети прямого распространения которые называются многослойными персептронами. К многослойным сетям без обратных связей относится свыше 80% приложений нейронных сетей.

Рис. 1

Нейронные сети с обратными связями в этих сетях информация с последующих слоёв передаётся на следующие слои.

Понятия обратной связи характерно для динамических сетей, в которых выходной сигнал некоторого элемента системы оказывает влияние на входной сигнал этого элемента.

Таким образом, некоторые внешние сигналы усиливаются сигналами, циркулирующими внутри системы. На самом деле обратная связь присутствует в нервной системе практически любого животного. Она играет важную роль в изучении особого класса нейронных сетей называемых рекуррентными. Эти сети строятся из динамических нейронов, чьё поведение расписывается деференциальными или разносными уравнениями, как правило, первого порядка.

К нейронным сетям с обратными связями относятся, например сети Элмана (Рис. 2) и Джордано (Рис. 3)

Выход
Рис. 3
Сеть Джордано

Следует отметить, что проблемы синтеза искусственной нейронной сети сильно зависит от решаемой задачи.

Не существует формального алгоритма по определению необходимой архитектуры.

Часто оптимальный вариант нейронной сети можно получить путём интуитивного подбора. На практике часто выбирают либо заведомо маленькую нейронную сеть и постепенно её наращивают, либо заведомо большую и постепенно сокращаю, выявляя неиспользуемые связи.

  1. Обучение нейронных сетей.

Нейронная сеть представляет собой адаптивную систему.

Её цикл состоит из 2 фаз: обучение (тренировки) и работа сети.

Таким образом, нейронная сеть, прежде чем использоваться на практике для решения какой либо задачи должна быть обучена. Способность обучатся на основе данных окружающей среды и в результате обучения, повышать свою производительность является самым важным свойством нейронных сетей. От того, как качественного будет проведена фаза, тренировка нейронной сети зависит способность сети, решать поставленные передней проблемы во время фазы работы.

Теория обучения рассматривает 3 фундаментальных свойства, связанных с обучение нейронной сети по примерам:

1) Ёмкость – она определяет, сколько образов сеть может запомнить и какие функции и границы принятия решений могут быть на ней сформированы.

2) Сложность образов – она определяет число обучающих примеров необходимых для достижения способности нейронной сети к обобщению.

3) Вычислительная сложность – важной характеристикой является время, затраченное на обучение. Как правило, время обучения и качество обучения связаны обратной зависимостью. Выбирать эти параметры приходится путём компромисса.

С понятием обучения ассоциируется много видов деятельности. В связи с этим сложно дать этому процессу однозначное определение.

С позиции нейронной сети можно использовать следующее определение:

Обучение – это процесс, в котором свободные параметры нейронной сети настраиваются под средством моделирования среды, в которую эта сеть встроена. Тип обучения определяется способом подстройки этих параметров. Данное определение процесса обучения предполагает следующую последовательность событий:

А ) В нейронную сеть поступают стимулы из внешней среды

Б ) В результате этого изменяются свободные параметры нейронной сети

В ) После изменения внутренней структуры нейронная сеть отвечает на возбуждение уже иным образом.

Этот список чётких правил решения проблемы обучения называется алгоритмом обучения. Не существует универсального алгоритма обучения подходящего для всех архитектур нейронных сетей.

Алгоритмы обучения различаются между собой способом настройки синоптических весов нейронов и порогов. Отличительной характеристикой является и способ связи обучаемой нейронной сети с внешним миром. В этом контексте говорят о парадигме обучения связанной с моделью окружающей среды, в которой функционирует данная нейронная сеть.

Множество алгоритмов обучения делится на 2 класса: Детерминистских (Заданных) и Стохастических (вероятностных). В первом из них корректировка синоптических весов нейронов представляет собой жёсткую последовательность действий, а во втором - она производится на основе действий, которые подчиняются некоторому случайному процессу.

Парадигмы обучения нейронных сетей

Существует 3 парадигмы обучения нейронных сетей:

1) Обучение с учителем (Контролируемое обучение)

2) Обучение без учителя (Самообучение)

3) Смешенное (С учителем и без учителя)

Обучение с учителем

Большинство моделей нейронных сетей предусматривает присутствие учителя. Под учителем может пониматься совокупность тренировочных данных (обучающее множество) или внешний наблюдатель, который определяет значение выхода.

Нейронные сети, обучаемые с учителем, представляют собой средства для извлечения из набора данных информации о взаимосвязях между выходами и входами нейронной сети. Качество нейронной сети зависит от предъявляемых ей в процессе обучения набора учебных данных, при этом учебные данные должны быть типичными для задачи, решению которой обучается нейронная сеть.

Данные, которые обычно используются для обучения нейронной сети, часто разделяются на 2 категории:

одни данные используются для обучения, а другие для тестирования. По этому качество обучения сети на прямую зависит от количества примеров в обучающей выборке и от того, на сколько эти примеры описывают решаемую задачу.

Искусственная нейронная сеть — совокупность нейронов, взаимодействующих друг с другом. Они способны принимать, обрабатывать и создавать данные. Это настолько же сложно представить, как и работу человеческого мозга. Нейронная сеть в нашем мозгу работает для того, чтобы вы сейчас могли это прочитать: наши нейроны распознают буквы и складывают их в слова.

Искусственная нейронная сеть - это подобие мозга. Изначально она программировалась с целью упростить некоторые сложные вычислительные процессы. Сегодня у нейросетей намного больше возможностей. Часть из них находится у вас в смартфоне. Ещё часть уже записала себе в базу, что вы открыли эту статью. Как всё это происходит и для чего, читайте далее.

С чего всё началось

Людям очень хотелось понять, откуда у человека разум и как работает мозг. В середине прошлого века канадский нейропсихолог Дональд Хебб это понял. Хебб изучил взаимодействие нейронов друг с другом, исследовал, по какому принципу они объединяются в группы (по-научному - ансамбли) и предложил первый в науке алгоритм обучения нейронных сетей.

Спустя несколько лет группа американских учёных смоделировала искусственную нейросеть, которая могла отличать фигуры квадратов от остальных фигур.

Как же работает нейросеть?

Исследователи выяснили, нейронная сеть - это совокупность слоёв нейронов, каждый из которых отвечает за распознавание конкретного критерия: формы, цвета, размера, текстуры, звука, громкости и т. д. Год от года в результате миллионов экспериментов и тонн вычислений к простейшей сети добавлялись новые и новые слои нейронов. Они работают по очереди. Например, первый определяет, квадрат или не квадрат, второй понимает, квадрат красный или нет, третий вычисляет размер квадрата и так далее. Не квадраты, не красные и неподходящего размера фигуры попадают в новые группы нейронов и исследуются ими.

Какими бывают нейронные сети и что они умеют

Учёные развили нейронные сети так, что те научились различать сложные изображения, видео, тексты и речь. Типов нейронных сетей сегодня очень много. Они классифицируются в зависимости от архитектуры - наборов параметров данных и веса этих параметров, некой приоритетности. Ниже некоторые из них.

Свёрточные нейросети

Нейроны делятся на группы, каждая группа вычисляет заданную ей характеристику. В 1993 году французский учёный Ян Лекун показал миру LeNet 1 - первую свёрточную нейронную сеть, которая быстро и точно могла распознавать цифры, написанные на бумаге от руки. Смотрите сами:

Сегодня свёрточные нейронные сети используются в основном с мультимедиными целями: они работают с графикой, аудио и видео.

Рекуррентные нейросети

Нейроны последовательно запоминают информацию и строят дальнейшие действия на основе этих данных. В 1997 году немецкие учёные модифицировали простейшие рекуррентные сети до сетей с долгой краткосрочной памятью. На их основе затем были разработаны сети с управляемыми рекуррентными нейронами.

Сегодня с помощью таких сетей пишутся и переводятся тексты, программируются боты, которые ведут осмысленные диалоги с человеком, создаются коды страниц и программ.

Использование такого рода нейросетей - это возможность анализировать и генерировать данные, составлять базы и даже делать прогнозы.

В 2015 году компания SwiftKey выпустила первую в мире клавиатуру, работающую на рекуррентной нейросети с управляемыми нейронами. Тогда система выдавала подсказки в процессе набранного текста на основе последних введённых слов. В прошлом году разработчики обучили нейросеть изучать контекст набираемого текста, и подсказки стали осмысленными и полезными:

Комбинированные нейросети (свёрточные + рекуррентные)

Такие нейронные сети способны понимать, что находится на изображении, и описывать это. И наоборот: рисовать изображения по описанию. Ярчайший пример продемонстрировал Кайл Макдональд, взяв нейронную сеть на прогулку по Амстердаму. Сеть мгновенно определяла, что находится перед ней. И практически всегда точно:

Нейросети постоянно самообучаются. Благодаря этому процессу:

1. Skype внедрил возможность синхронного перевода уже для 10 языков. Среди которых, на минуточку, есть русский и японский - одни из самых сложных в мире. Конечно, качество перевода требует серьёзной доработки, но сам факт того, что уже сейчас вы можете общаться с коллегами из Японии по-русски и быть уверенными, что вас поймут, вдохновляет.

2. Яндекс на базе нейронных сетей создал два поисковых алгоритма: «Палех» и «Королёв». Первый помогал найти максимально релевантные сайты для низкочастотных запросов. «Палех» изучал заголовки страниц и сопоставлял их смысл со смыслом запросов. На основе «Палеха» появился «Королёв». Этот алгоритм оценивает не только заголовок, но и весь текстовый контент страницы. Поиск становится всё точнее, а владельцы сайтов разумнее начинают подходить к наполнению страниц.

3. Коллеги сеошников из Яндекса создали музыкальную нейросеть: она сочиняет стихи и пишет музыку. Нейрогруппа символично называется Neurona, и у неё уже есть первый альбом:

4. У Google Inbox с помощью нейросетей осуществляется ответ на сообщение. Развитие технологий идет полный ходом, и сегодня сеть уже изучает переписку и генерирует возможные варианты ответа. Можно не тратить время на печать и не бояться забыть какую-нибудь важную договорённость.

5. YouTube использует нейронные сети для ранжирования роликов, причём сразу по двум принципам: одна нейронная сеть изучает ролики и реакции аудитории на них, другая проводит исследование пользователей и их предпочтений. Именно поэтому рекомендации YouTube всегда в тему.

6. Facebook активно работает над DeepText AI - программой для коммуникаций, которая понимает жаргон и чистит чатики от обсценной лексики.

7. Приложения вроде Prisma и Fabby, созданные на нейросетях, создают изображения и видео:

Colorize восстанавливает цвета на чёрно-белых фото (удивите бабушку!).

MakeUp Plus подбирает для девушек идеальную помаду из реального ассортимента реальных брендов: Bobbi Brown, Clinique, Lancome и YSL уже в деле.


8.
Apple и Microsoft постоянно апгрейдят свои нейронные Siri и Contana. Пока они только исполняют наши приказы, но уже в ближайшем будущем начнут проявлять инициативу: давать рекомендации и предугадывать наши желания.

А что ещё нас ждет в будущем?

Самообучающиеся нейросети могут заменить людей: начнут с копирайтеров и корректоров. Уже сейчас роботы создают тексты со смыслом и без ошибок. И делают это значительно быстрее людей. Продолжат с сотрудниками кол-центров, техподдержки, модераторами и администраторами пабликов в соцсетях. Нейронные сети уже умеют учить скрипт и воспроизводить его голосом. А что в других сферах?

Аграрный сектор

Нейросеть внедрят в спецтехнику. Комбайны будут автопилотироваться, сканировать растения и изучать почву, передавая данные нейросети. Она будет решать - полить, удобрить или опрыскать от вредителей. Вместо пары десятков рабочих понадобятся от силы два специалиста: контролирующий и технический.

Медицина

В Microsoft сейчас активно работают над созданием лекарства от рака. Учёные занимаются биопрограммированием - пытаются оцифрить процесс возникновения и развития опухолей. Когда всё получится, программисты смогут найти способ заблокировать такой процесс, по аналогии будет создано лекарство.

Маркетинг

Маркетинг максимально персонализируется. Уже сейчас нейросети за секунды могут определить, какому пользователю, какой контент и по какой цене показать. В дальнейшем участие маркетолога в процессе сведётся к минимуму: нейросети будут предсказывать запросы на основе данных о поведении пользователя, сканировать рынок и выдавать наиболее подходящие предложения к тому моменту, как только человек задумается о покупке.

Ecommerce

Ecommerce будет внедрён повсеместно. Уже не потребуется переходить в интернет-магазин по ссылке: вы сможете купить всё там, где видите, в один клик. Например, читаете вы эту статью через несколько лет. Очень вам нравится помада на скрине из приложения MakeUp Plus (см. выше). Вы кликаете на неё и попадаете сразу в корзину. Или смотрите видео про последнюю модель Hololens (очки смешанной реальности) и тут же оформляете заказ прямо из YouTube.

Едва ли не в каждой области будут цениться специалисты со знанием или хотя бы пониманием устройства нейросетей, машинного обучения и систем искусственного интеллекта. Мы будем существовать с роботами бок о бок. И чем больше мы о них знаем, тем спокойнее нам будет жить.

P. S. Зинаида Фолс - нейронная сеть Яндекса, пишущая стихи. Оцените произведение, которое машина написала, обучившись на Маяковском (орфография и пунктуация сохранены):

« Это »

это
всего навсего
что-то
в будущем
и мощь
у того человека
есть на свете все или нет
это кровьа вокруг
по рукам
жиреет
слава у
земли
с треском в клюве

Впечатляет, правда?

Искусственная нейронная сеть - это набор нейронов, соединенных между собой. Как правило, передаточные, активационные функции всех нейронов в сети фиксированы, а веса являются параметрами сети и могут изменяться. Некоторые входы нейронов помечены как внешние входы сети, а некоторые выходы - как внешние выходы сети.

Подавая любые числа на входы сети, мы получаем какой-то набор чисел на выходах сети. Таким образом, работа нейросети состоит в преобразовании входного вектора X в выходной вектор Y, причем это преобразование задается весам сети.
Существуют различные классификации нейронных сетей в зависимости от признака. Классифицируя нейронные сети по топологии, можно выделить три основных типа таких сетей:

  1. полносвязные сети (рис. 1, а);
  2. многослойные или слоистые сети (рис 1, б)
  3. слабосвязные сети (рис. 1, в)

Рис. 1. Архитектуры нейронных сетей: а - полносвязная сеть, б - многослойная сеть с последовательными связями, в - слабосвязные сети

Полносвязные сети представляют собой ИНС, каждый нейрон которой передает свой выходной сигнал остальным нейронам, в том числе и самому себе (рис. 1-а). Все входные сигналы подаются всем нейронам. Выходными сигналами сети могут быть все или некоторые выходные сигналы нейронов после нескольких тактов функционирования сети.
В многосвязных (или многослойных) сетях нейроны объединяются в слои. Слой содержит совокупность нейронов с едиными входными сигналами. Число нейронов в каждом слое может быть любым и никак заранее не связано с количеством нейронов в других слоях. В общем случае сеть состоит из Q слоев, пронумерованных слева направо. Внешние входные сигналы подаются на входы нейронов первого слоя (входной слой часто нумеруют как нулевой), а выходами сети являются выходные сигналы последнего слоя. Вход нейронной сети можно рассматривать как выход «нулевого слоя» вырожденных нейронов, которые служат лишь в качестве распределительных точек, суммирования и преобразования сигналов здесь не производится. Кроме входного и выходного слоев в многослойной нейронной сети есть один или несколько промежуточных (скрытых) слоев.
Связи от выходов нейронов некоторого слоя q к входам нейронов следующего слоя (q + 1) называются последовательными.
В свою очередь, среди слоистых сетей выделяют следующие типы.
Сети без обратных связей (прямого распределения). В таких сетях нейроны входного слоя получают входные сигналы, преобразуют их и передают нейронам 1-го скрытого слоя, далее срабатывает 1-й скрытый слой и т.д. до Q-гo, который выдает выходные сигналы для интерпретатора и пользователя (рис. 1-б). Если не оговорено противное, то каждый выходной сигнал i-го слоя подастся на вход всех нейронов (q+l)-го слоя; однако возможен вариант соединения q-го слоя с произвольным (q+р)-м слоем.
Сети с обратными связями. Это сети, у которых информация с последующих слоев передается на предыдущие.
В качестве примера сетей с обратными связями можно рассматривать так называемые частично-рекуррентные сети Элмана и Жордана (рис.2).


Рис. 2. Частично-рекурентные сети: а - Элмана; б - Жордана

Слабосвязные сети (нейронные сети с локальными связями) представляют собой слоистые сети с небольшим количеством связей (рис 1-в).

Похожие публикации