Подключить элемент пельтье. Элемент пельтье он же термоэлектрический модуль. Холодильник на элементах Пельтье

Модуль Пельтье можно использовать в 4 разных схемах: как нагревательный элемент (в инкубаторах...), как охлаждающий элемент (в холодильниках...), получать электричество (генератор...), а так же с помощью элемента Пельтье можно получать воду. Об этом и будет моя статья

Элемент Пельтье - это термоэлектрический преобразователь, принцип действия которого базируется на эффекте Пельтье - возникновении разности температур при протекании электрического тока. В англоязычной литературе элементы Пельтье обозначаются TEC (от англ. Thermoelectric Cooler - термоэлектрический охладитель).

Эффект, обратный эффекту Пельтье, называется эффектом Зеебека.

Принцип действия

В основе работы элементов Пельтье лежит контакт двух токопроводящих материалов с разными уровнями энергии электронов в зоне проводимости. При протекании тока через контакт таких материалов, электрон должен приобрести энергию, чтобы перейти в более высокоэнергетическую зону проводимости другого полупроводника. При поглощении этой энергии происходит охлаждение места контакта полупроводников. При протекании тока в обратном направлении происходит нагревание места контакта полупроводников, дополнительно к обычному тепловому эффекту.

При контакте металлов эффект Пельтье настолько мал, что незаметен на фоне омического нагрева и явлений теплопроводности. Поэтому при практическом применении используется контакт двух полупроводников.

Элемент Пельтье состоит из одной или более пар небольших полупроводниковых параллелепипедов - одного n-типа и одного p-типа в паре (обычно теллурида висмута, Bi2Te3 и германида кремния), которые попарно соединены при помощи металлических перемычек. Металлические перемычки одновременно служат термическими контактами и изолированы непроводящей плёнкой или керамической пластинкой. Пары параллелепипедов соединяются таким образом, что образуется последовательное соединение многих пар полупроводников с разным типом проводимости, так чтобы вверху были одни последовательности соединений (n->p), а снизу противоположные (p->n). Электрический ток протекает последовательно через все параллелепипеды. В зависимости от направления тока верхние контакты охлаждаются, а нижние нагреваются - или наоборот. Таким образом электрический ток переносит тепло с одной стороны элемента Пельтье на противоположную и создаёт разность температур.

Если охлаждать нагревающуюся сторону элемента Пельтье, например при помощи радиатора и вентилятора, то температура холодной стороны становится ещё ниже. В одноступенчатых элементах, в зависимости от типа элемента и величины тока, разность температур может достигать приблизительно 70 °C.

Достоинства и недостатки

Достоинством элемента Пельтье являются небольшие размеры, отсутствие каких-либо движущихся частей, а также газов и жидкостей. При обращении направления тока возможно как охлаждение, так и нагревание - это даёт возможность термостатирования при температуре окружающей среды как выше, так и ниже температуры термостатирования. Также достоинством являются отсутствие механических частей и отсутствие шума.

Недостатком элемента Пельтье является более низкий коэффициент полезного действия, чем у компрессорных холодильных установок на фреоне, что ведёт к большой потребляемой мощности для достижения заметной разности температур. Несмотря на это, ведутся разработки по повышению теплового КПД, а элементы Пельтье нашли широкое применение в технике, так как без каких-либо дополнительных устройств можно реализовать температуры ниже 0 °C.

Основной проблемой в построении элементов Пельтье с высоким КПД является то, что свободные электроны в веществе являются одновременно переносчиками и электрического тока, и тепла. Материал для элемента Пельтье же должен одновременно обладать двумя взаимоисключающими свойствами - хорошо проводить электрический ток, но плохо проводить тепло.

В батареях элементов Пельтье возможно достижение теоретически очень большой разницы температур, более 70 градусов по цельсию, в связи с этим лучше использовать импульсный метод регулирования температуры, благодаря которому можно снизить также потребление энергии. При этом желательно сглаживать пульсации тока для продления срока службы элемента Пельтье.

Применение термоэлектрического модуля : в куллерах для воды, системах охлаждения компьютеров или микросхем различных малогабаритных приборов,в электрических термогенераторах,охлаждение видеокарт, северных или южных мостов, автомобильные холодильники, охладители воздуха, Arduino, для охлаждение ПЗС матриц и инфрокрасных фотоприемников, в электрических термогенераторах, в термостатах, в научных лаболаторных приборов, термокалибраторов, термостабилизаторов. В общем там где требуется достижения перепадов температур более 60 градусов.

Размеры пластин Пельтье и характеристики потребления

Размеры пластин Пельтье и характеристики потребления (потребляемая мощность, напряжение, сила тока, максимальная разница температур). Маркировки этих термоэлектрических генераторов могут быть на разных сайтах разные, все зависит от производителя (например: TEG1-241-1.4-1.2; СР1.4-127-06L отечественные; TB-127-1.4-1.5 Frost-72; SP1848-27145; термогенератор Зеебека TEP1-142T300). Характеристики, в свою очередь будут не сильно отличаться, но некоторые показатели не значительно разнятся.

Qmax Umax Imax dTmax Размеры,(мм)
(Вт) (В) (A) (град) A B H
36,0 16,1 3,6 71 30,0 30,0 3,6
36,0 16,1 3,6 71 40,0 40,0 3,6
62,0 16,3 6,2 72 40,0 40,0 3,9
65,0 16,7 6,3 74 40,0 40,0 3,9
80,0 16,1 8,0 71 40,0 40,0 3,4
80,0 16,1 8,0 71 48,0 48,0 3,4
94,0 24,9 6,1 70 40,0 40,0 3,9
115,0 24,6 7,6 69 40,0 40,0 3,6
120,0 24,6 7,9 69 40,0 40,0 3,4
131,0 24,6 8,6 69 40,0 40,0 3,3
172,0 24,6 11,3 69 40,0 40,0 3,2
156,0 15,7 16,1 70 48,0 48,0 3,4
223,0 15,5 23,4 68 55,0 59,0 3,3
310,0 24,6 20,6 69 62,0 62,0 3,2

USB Холодильник своими руками (Модуль Пельтье)

Для постройки нашего мини-холодильника нам необходимо найти или купить элемент Пельтье (что это такое и как работает Вы сможете прочитать ниже) и два радиатора.


Вот этот самый элемент Пельтье, я выдрал его из сломанного компа, он там стоял между процессором и кулером. Счистил с него старую термопасту. В двух словах — этот элемент Пельтье при подаче на него постоянного тока начинает работать следующим образом: одна сторона у него начинает греться, а вторая — охлаждаться, если поменять полярность источника питания, то стороны элемента будут вести себя наоборот!

Далее я взял два массивных радиатора от ненужного усилка. Потом смазал элемент новой термопастой, которую купил в радио магазине, и зажал элемент Пельтье между радиаторов. Использование термопасты в данном случае обязательно!
Подключил провода к элементу от USB кабеля и воткнул в комп — одна радиатор начал греться, а второй — охлаждаться! Значит, всё пучком!

Материал, из которого я склеил холодильник, похож на прессованный пенопласт или пористый пластик. В общем, материал может быть любым, его главное качество термоизоляция.
Стекло — органическое, выглядит довольно хрупко, но на самом деле материал прочный.
Клей — суперклей.

Потом для удобства сделал застёжку на магнитиках.
Получилось нормально — туда спокойно влезает бутылка минералки.

Генератор — получение электричества с помощью элемента Пельтье

Плюсы этого генератора:

— Топливо – всё что горит или греет.
— Выход USB 5 Вольт, 500mA.
— Не зависит от солнца, ветра и т.д.
— Простая и крепкая конструкция, которая может служить вечно.
— Можно готовить на нем еду, пока ваш телефон заряжается.
— Универсальность.
— Может собрать любой у себя дома за 1 вечер (даже работник АвтоВАЗа=)).
— Дешевизна конструкции.

Изобрел не я, есть коммерческие экземпляры, которые на много лучше моего. Например, BioLite CampStove, его цена 7900 руб. Мой экземпляр сделан на скорую руку для написания этой статьи и дальнейших экспериментов.

Основой является элемент Пельтье. Это термоэлектрический модуль, используемый в кулерах для воды и переносных холодильниках, так же его применяют для охлаждения процессора. При подаче на него напряжения, одна сторона охлаждается, а другая нагревается. Мы же наоборот будем греть одну сторону, чтобы получить электричество.

Главный принцип в том чтобы одна сторона нагревалась, а другая оставалась неизменной, для максимальной эффективности нужен перепад температур в 100 градусов по Цельсию.

Приступим!


Нам понадобится:
— Элемент Пельтье, я использовал TEC1-12710
— Не нужный блок питания от компа
Любой, даже тот, который сгорел, и выгорело всё кроме корпуса
— Стабилизатор напряжения
DC-DC Boost Module, Входное напряжение 1-5 Вольт, на выходе всегда 5В.
— Радиатор (чем больше, тем лучше), желательно с кулером на 5В, т.к. радиатор будет постепенно нагреваться. Зимой это не грозит, так как можно поставить радиатор на лед.
— Термопаста
— Набор инструментов

Модуль TEC1-12710, рассчитан на 10 А (есть меньше, есть больше). Но более мощные будут большего размера. Чем больше сила тока, тем он эффективней и дороже. Я купил в алиэкспресс примерно за 250 руб. У нас в магазинах электроники такой стоит около 1500 руб.

Модуль рассчитан на максимальное напряжение 12В, но столько он не выдает из-за низкого КПД, когда мы используем его в обратном направлении, т.е. на получение тока.

Для того чтобы было стабильно 5 вольт и устройства заряжались безопасно, нужен повышающий стабилизатор. Он начинает выдавать 5 Вольт, когда на элементе Пельтье еще только 1. О том, что всё готово к зарядке, можно узнать по горящему светодиоду на модуле.


Можете собрать свой, я же решил довериться китайцам, они предлагают готовый модуль с USB выходом, за 80 руб. на том же сайте.

Распотрошим наш блок питания. Мне пришлось сделать дополнительные дырки для лучшей циркуляции воздуха (блок питания попался очень уж древний).

Главный принцип в том, чтобы воздух засасывало снизу, и выходил он через верх. Проще говоря, нужно сделать обычную печку. Не забудьте предусмотреть отверстие для подкидывания щепок и подставку под котелок или кружку для кипячения воды, если вам это нужно.


Далее к ровной стенке нужно прикрепить модуль Пельтье с радиатором, предварительно равномерно нанеся термопасту. Чем плотнее контакт, тем лучше. Та сторона, где написана модель – холодная, именно к ней мы прикладываем радиатор. Если вы перепутали, модуль не будет выдавать напряжение, в этом случае нужно просто поменять провода местами.


Припаиваем повышающий преобразователь, и находим, куда его спрятать. Можно вообще оставить его висеть на проводах, но обязательно нужно заизолировать, например, одеть на него термоусадку.

Собираем всё вместе. Вот что должно получиться:


Как это работает?

Закидываем внутрь ветки, щепки, в общем, всё то, что горит. Затем разжигаем. Огонь нагревает стенки печки и элемент Пельтье, который на одной из этих стенок. Другая сторона элемента, которая на радиаторе, остается при уличной температуре. Чем больше разница температур, тем больше мощность, но не переборщите.

Максимальная эффективность достигается уже при разнице в 100 градусов. Со временем радиатор начинает нагреваться, и его нужно будет охлаждать. Можно подбрасывать снег, поливать водой, поставить радиатором на лед или в воду, поставить на него кружку с холодной водой. Вариантов много, самый простой это кулер, он будет забирать часть мощности, но за счет охлаждения общий результат не измениться.


НЕ допускайте воздействие больших температур на элемент, он может перегореть и сгореть. В документации указана максимальная температура 180 °С, но особо беспокоится не стоит, с хорошим охлаждением и на простых дровах ничего с ним не будет.

Если вы не будете ленится и всё правильно сделаете, то получите вот такую простую щепочницу на которой можно подогревать еду, кипятить, воду и одновременно заряжать свои гаджеты.

Её можно использовать дома, если отключили электричество, поставив внутрь свечку. Кстати если подключить к ней светодиоды, но свет будет на много ярче чем от самой свечки.

В любом месте где можно найти что-то горящее, у вас будет электричество, тепло и возможность удобно готовить еду, расходуя меньше горючего по сравнению с костром.

Первые испытания!

Пошел после работы в лес, солнце почти село, хворост мокрый, но печь оправдала себя на 100%.

Результат превзошёл все мои ожидания. Сразу после разгорания щепок, загорелся индикатор, я подключи телефон и он начал заряжаться. Зарядка шла стабильно.

Преобразователь вообще не напрягался. Еще я брал с собой охлаждающую подставку для ноутбука, на ней 2 кулера и светодиоды, должно прилично потреблять. Подключил, всё крутится, светится, ветерок дует. Брал еще USB вентилятор, подключил в конце, когда остались одни угли. Всё отлично крутится, даже не знаю что еще можно попробовать.

Результат:

Всё прекрасно работает выдает свои пол Ампера. Все таки нужен кулер, т.к. за пол часа радиатор нагрелся порядка 40 градусов, летом это будет еще больше. Пускай крутиться себе.

Языки пламени вырываются высоко вверх, мне лично такого костра не надо, буду закрывать часть отверстий, чтобы горело медленней.

Буду делать все по новой, возьму за основу стандартную щепочницу которую делают из консервных банок, но сделаю из метала потолще и прямоугольной формы. Куплю хороший радиатор с кулером подходящей формы и постараюсь сделать разборный вариант, чтобы при переноске занимало меньше места.

Получение питьевой воды с помощью модуля Пельтье

Огромное количество электронных устройств поглощает электрическую энергию, которую надо постоянно возобновлять. Находясь в пути, приходится возить с собой химические источники тока или вырабатывать электричество из механической энергии с помощью сложных и громоздких приспособлений.

Вид термоэлектрического генератора

Ещё раньше Зеебек обнаружил возникновение термо-ЭДС в цепи из разнородных проводников при поддерживании разной температуры в месте контакта. На основании термоэлектрических эффектов был создан так называемый элемент или модуль «Пельтье», представляющий собой 2 керамические пластины с расположенным между ними биметаллом. При подаче через них электрического тока, одна сторона пластины нагревается, а другая охлаждается, что позволяет создавать из них холодильники. На рисунке ниже изображены модули разных размеров, применяемые в технике.

Модули «Пельтье» разных размеров

Процесс является обратимым: если поддерживать температурный перепад на элементах с обеих сторон, в них будет вырабатываться электрический ток, что позволяет использовать устройство как термоэлектрический генератор для выработки небольшого количества электроэнергии.

Эффект «Пельтье» заключается в выделении тепла в месте контакта разнородных проводников при протекании по ним электрического тока.

Принцип действия модулей

На контакте разнородных проводников происходит выделение или поглощение тепла в зависимости от направления электрического тока. Поток электронов обладает потенциальной и кинетической энергией. Плотность тока в контактирующих проводниках одинакова, а плотности потоков энергии отличаются.

Если энергия, втекающая в контакт, больше энергии, вытекающей из него, это означает, что электроны тормозятся в месте перехода из одной области в другую и разогревают кристаллическую решётку (электрическое поле тормозит их движение). Когда направление тока меняется, происходит обратный процесс ускорения электронов, когда энергия у кристаллической решётки забирается и происходит её охлаждение (направления электрического поля и движения электронов совпадают).

Энергетическая разность зарядов на границе полупроводников самая высокая и в них эффект проявляется наиболее сильно.

Модуль «Пельтье»

Больше всего распространён термоэлектрический модуль (ТЭМ), представляющий собой полупроводники p-, и n-типов, соединённые между собой через медные проводники.

Схема принципа работы модуля

В одном элементе существует 4 перехода между металлом и полупроводниками. При замкнутой цепи поток электронов перемещается от отрицательного полюса АКБ к положительному, последовательно проходя через каждый переход.

Вблизи первого перехода медь – полупроводник p-типа происходит тепловыделение в полупроводниковой зоне, поскольку электроны переходят в состояние с меньшей энергией.

Вблизи следующей границы с металлом в полупроводнике происходит поглощение теплоты, в связи с «высасыванием» электронов из зоны р-проводимости под действием электрического поля.

На третьем переходе электроны попадают в полупроводник типа n, где они обладают большей энергией, чем в металле. При этом происходит поглощение энергии и охлаждение полупроводника около границы перехода.

Последний переход сопровождается обратным процессом тепловыделения в n-полупроводнике из-за перехода электронов в зону с меньшей энергией.

Поскольку нагревающиеся и охлаждающиеся переходы находятся в разных плоскостях, элемент «Пельтье» сверху будет охлаждаться, а снизу нагреваться.

На практике каждый элемент содержит большое количество нагревающихся и охлаждающихся переходов, что приводит к образованию ощутимого температурного перепада, позволяющего создать термоэлектрогенератор.

Как выглядит структура модуля

Элемент «Пельтье» содержит большое количество полупроводниковых параллелепипедов p-, и n-типов, последовательно соединённых между собой перемычками из металла – термоконтактов, другой стороной соприкасающихся с керамической пластиной.

В качестве полупроводников применяется теллурид висмута и германид кремния.

Достоинства и недостатки ТЭМ

К преимуществам термоэлектрического модуля (ТЭМ) относят:

  • малые размеры;
  • возможность работы, как охладителей, так и нагревателей;
  • обратимость процесса при смене полярности, позволяющая поддерживать точное значение температуры;
  • отсутствие подвижных элементов, которые обычно изнашиваются.

Недостатки модулей:

  • малый КПД (2-3%);
  • необходимость создания источника, обеспечивающего температурный перепад;
  • значительное потребление электроэнергии;
  • высокая стоимость.

Несмотря на недостатки, ТЭМ применяются там, где большие энергозатраты не имеют значения:

  • охлаждение чипов, деталей цифровых фотокамер, диодных лазеров, кварцевых генераторов, инфракрасных детекторов;
  • использование каскадов ТЭМ, позволяющих добиться низкой температуры;
  • создание компактных холодильников, например, для автомобилей;
  • термоэлектрогенератор для зарядки мобильных устройств.

При малой производительности ТЭГ целесообразно применять в походных условиях, где требуется получить электричество для зарядки сотового телефона или светодиодной лампочки. Простота конструкции позволяет изготовить электрогенератор своими руками.

Альтернативными источниками также являются солнечные батареи или ветрогенератор . Для первых требуются особые условия – наличие солнечного освещения, которое может быть не всегда. Другой источник имеет большие габариты и для него необходим ветер. Ещё одним недостатком у них является наличие подвижных частей, снижающих надёжность и имеющих большой вес.

Термогенераторы промышленного изготовления

Компания BioLite разработала новую модель для походов, позволяющую готовить пищу в компактной переносной печке на дровах и одновременно заряжать мобильное устройство от встроенного ТЭГ.

Компактная переносная печка на дровах

Устройство пригодится везде: на рыбалке, в походе, на даче. В качестве топлива можно применять всё, что горит.

При сгорании в топке топлива тепло передаётся через стенку модулю, который вырабатывает электричество. При напряжении 5В, мощность на выходе составляет 2-4 Вт, чего вполне хватает для зарядки многих типов мобильных устройств и работы освещения на светодиодах. Красной стрелкой изображено направление движения тепла, синей – холодного воздуха в топку, жёлтыми – подача электричества на вращение вентилятора подсоса воздуха и на выход генератора через USB.

Схема работы ТЭГ компании BioLite на дровах

Печь-генератор «Индигирка», разработанная петербургским предприятием Криотерм, имеет характеристики:

  • тепловая мощность – 6 кВт;
  • вес – 56 кг;
  • габариты – 500х530х650 мм;
  • эл. мощность при напряжении 5В – 60 Вт.

Печь является обычной отопительно-варочной, где с двух сторон закреплены термоэлектрогенераторы.

Как выглядит печь-термоэлектрогенератор «Индигирка»

Устройство довольно удобное, но впечатляет цена – 50 тыс. руб. Хоть печь, и предназначена для походных условий, но рядовым охотникам и рыболовам она будет явно не по карману. Как отопительная, она ничем не лучше обычных и более дешёвых моделей.

Если пристроить ТЭГ к простой печи, устройство, изготовленное своими руками, будет работать отлично.

ТЭГ своими руками

Чтобы термоэлектрический генератор собрать своими руками, необходимы следующие элементы:

  1. Модуль. Для генерирования электрического тока можно применять не все модули, а только те, которые способны выдержать нагрев до 300-400 0 С. Наличие запаса по нагреву необходимо, поскольку даже при незначительном перегреве элемент выходит из строя. Наиболее распространены модели типа ТЕС1-12712 в виде квадратных пластин с размером стороны 40, 50 или 60 мм.

Если взять максимальный размер, достаточно в конструкции, сделанной своими руками, применить один элемент. Первые 3 цифры маркировки – 127 означают, сколько элементов содержится в 1 пластине. Последние цифры показывают величину максимально допустимого тока, который составляет 12 А.

  1. Повышающий преобразователь. Он необходим для получения постоянного напряжения 5В. Генератор может выдавать меньшее напряжение, которое необходимо увеличить. Устройства выпускают зарубежные (типы 5V NCP1402 и MAX 756) и отечественные (3.3В/5В ЕК-1674). Для зарядки мобильника следует подобрать устройство с USB разъёмом.
  2. Нагреватель. Простейшими вариантами являются костёр, свеча, самодельная лампа или миниатюрная печка.
  3. Охладитель. Проще всего применять воду или в зимнее время – снег.
  4. Соединительные элементы. Необходимо оборудование для создания максимально возможного температурного перепада между двумя сторонами пластины. Здесь выбор за умельцами, они чаще всего применяют 2 кружки или кастрюли разных размеров, у которых отпиливаются ручки и где одна вставляется внутрь другой. Между ними помещается модуль и крепится на термопасту. К нему припаиваются 2 провода и подключаются к преобразователю напряжения.

Для повышения КПД генератора, днища металлических поверхностей кружек или кастрюль, контактирующие с пластиной генератора, следует отполировать. Кроме того, на места между донышками меньшей и большой кружек наносится термостойкий герметик. Тогда тепло от нагрева будет локализовано в месте нахождения модуля.

Провода между модулем и преобразователем защищаются термостойкой изоляцией и герметиком.

Во внутреннюю кружку наливается вода, и вся конструкция ставится на огонь. Через несколько минут можно проверить выходное напряжение мультиметром.

Для того чтобы собрать термоэлектрический генератор самостоятельно, понадобятся материалы:

  1. элемент «Пельтье»;
  2. корпус от старого блока питания компьютера для изготовления мини-топки;
  3. преобразователь напряжения с USB выходом на 5В при входном 1-5 В;
  4. радиатор с кулером от процессора;
  5. термопаста.

Затраты здесь небольшие и устройство вполне способно зарядить мобильный телефон. Генератор, собранный своими руками, является аналогом зарубежной модели фирмы BioLite. Если его собрать аккуратно, устройство будет надёжно работать долгое время, поскольку ломаться здесь нечему. Важно только не перегреть элемент «Пельтье», отчего он может выйти из строя.

При использовании куллера для охлаждения радиатора его следует подключить к генератору, после чего часть вырабатываемой энергии будет расходоваться на охлаждение.

Несмотря на дополнительные энергозатраты, КПД установки возрастёт. Если радиатор будет сильно нагреваться в процессе работы, необходимо принять меры по его охлаждению. Иначе эффективность работы генератора будет низкой.

Характеристики генератора следующие:

  • выходное напряжение – 5В;
  • мощность нагрузки – 0,5А;
  • тип выхода – USB;
  • топливо – любое.

Устройство изготавливается следующим образом:

  • разобрать блок питания, оставив корпус;
  • приклеить термопастой модуль «Пельтье» к радиатору. Клеить надо холодной стороной, где нанесена маркировка;
  • зачистить и отполировать наружную боковую поверхность корпуса блока питания и приклеить к ней элемент другой стороной (вместе с радиатором);
  • припаять провода от входа преобразователя напряжения к выводам пластины.

Проверить ТЭГ можно, если наложить внутрь топки тонких веточек и поджечь их. Через несколько минут можно подключать телефон, для подзарядки которого требуется разница температуры сторон модуля 100 0 С. На рисунке ниже изображён генератор в сборке.

Термоэлектрогенератор в сборке, изготовленный своими руками

При использовании ТЭГ необходимо соблюдать полярность подключения модулей.

Видео. Термоэлектрический генератор

Эффект «Пельтье» позволяет создать небольшие генераторы и холодильники, работающие без подвижных частей. Повышение качества модулей и снижение энергопотребления мобильных устройств позволяет создать своими руками термоэлектрогенератор для зарядки аккумуляторов и снабжения небольшим количеством энергией различные устройства, где КПД не имеет особого значения.

Элемент Пельтье это термоэлектрический преобразователь, который создает разность температур на своих поверхностях при протекании электрического тока. Принцип действия основан на эффекте Пельтье – возникновении разности температур в месте контакта проводников под действием электрического тока.

Устройство и принцип действия элемента Пельтье.

Думаю, что только знатоки физики могут понять, как на самом деле работает элемент Пельтье. Для практиков главное, что существует минимальная единица модуля – термопара, представляющая из себя два соединенных проводника p и n типа.

При пропускании через термопару тока, происходит поглощение тепла на контакте n-p и выделение тепла на p-n контакте. В результате, участок полупроводника, примыкающий к n-p переходу, будет охлаждаться, а противоположный участок – нагреваться. Если поменять полярность тока, то на оборот, n-p участок будет нагреваться, а противоположный – охлаждаться.

Существует и обратный эффект. При нагревании одной из сторон термопары, вырабатывается электрический ток.

Для практического применения энергии поглощения тепла одной термопары недостаточно. В термоэлектрическом модуле используется много термопар. Электрически их соединяют последовательно. А конструктивно – так, что охлаждающие и нагревающие переходы расположены на разных сторонах модуля.

Термопары установлены между двух керамических пластин. Соединяются они медными шинами. Количество термопар может доходить до нескольких сотен. От их количества зависит мощность модуля.

Разность температур между горячей и холодной стороной модуля Пельтье может достигать 70 °C.

Надо понимать, что термоэлектрический модуль Пельтье снижает температуру одной стороны, относительно другой. Т.е. чтобы холодная сторона имела низкую температуру, необходимо отводить тепло от горячей поверхности, снижая ее температуру.

Для увеличения перепада температур, возможно последовательное (каскадное) соединение модулей.

Применение.

Термоэлектрические модули Пельтье применяются:

  • в небольших бытовых и автомобильных холодильниках;
  • в охладителях воды;
  • в системах охлаждения электронных приборов;
  • в термоэлектрических генераторах.

Я, используя элемент Пельтье, сделал .

Достоинства и недостатки модулей Пельтье.

Как-то неправильно сравнивать элементы Пельтье с компрессорными охлаждающими установками. Совсем разные устройства – большая механическая система с компрессором, газом, жидкостью и маленький полупроводниковый компонент. А больше сравнивать не с чем. Поэтому достоинства и недостатки модулей Пельтье весьма условное понятие. Есть области, в которых они не заменимы, а в других случаях их применение совершенно нецелесообразно.

К достоинству элементов Пельтье можно отнести:

  • отсутствие механически движущихся частей, газов, жидкостей;
  • бесшумная работа;
  • небольшие размеры;
  • возможность обеспечивать как охлаждение, так и нагревание;
  • возможность плавного регулирования мощности охлаждения.

Недостатки:

  • низкий кпд;
  • необходимость в источнике питания;
  • ограниченное число старт-стопов ;
  • высокая стоимость мощных модулей.

Параметры элементов Пельтье.

  • Qmax (Вт) – холодопроизводительность, при максимально-допустимом токе и разности температур между горячей и холодной сторонами равной 0. Считается, что вся тепловая энергия поступающая на холодную поверхность, мгновенно, без потерь передается на горячую.
  • Delta Tmax (град) - максимальная разность температур между поверхностями модуля при идеальных условиях: температура горячей стороны – 27 °C и холодная сторона с нулевой отдачей тепла.
  • Imax (А) – ток, обеспечивающий перепад температур delta Tmax.
  • Umax (В) – напряжение, при токе Imax и разности температур delta Tmax.
  • Resistance (Ом) – сопротивление модуля постоянному току.
  • COP (Сoefficient Of Рerformance) – коэффициент, отношение мощности охлаждения к электрической мощности, потребляемой модулем. Т.е. подобие кпд. Обычно 0.3-0.5.

Эксплуатационные требования к элементам Пельтье.

Модули Пельтье – капризные устройства. Их применение сопряжено с рядом требований, не выполнение которых приводит: к деградации модуля или выходу из строя, снижению эффективности системы.

  • Модули выделяют значительное количество тепла. Для отвода тепла должен быть установлен соответствующий радиатор . Иначе:
    • Невозможно достичь нужной температуры холодной стороны, т.к. элемент Пельтье снижает температуру относительно горячей поверхности.
    • Допустимый нагрев горячей стороны как правило + 80 °C (в высокотемпературных до 150 °C). Т.е. модуль может просто выйти из строя.
    • При высоких температурах кристаллы модуля деградируют, т.е. снижается эффективность и срок службы модуля.
  • Важен надежный тепловой контакт модуля с радиатором охлаждения.
  • Источник питания для модуля должен обеспечивать ток с пульсациями не более 5% . При более высоком уровне пульсаций эффективность модуля снизится, по некоторым данным на 30-40%.
  • Не допустимо, для управления элементом Пельтье, использовать релейные регуляторы. Это приведет к быстрой деградации модуля. Каждое включение – выключение вызывает деградацию полупроводниковых термопар. Из-за резких изменений температуры между пластинами модуля возникают механические напряжения в местах спайки с полупроводниками. Производители элементов Пельтье нормируют количество циклов старт-стопов модуля. Для бытовых модулей это порядка 5000 циклов. Релейный регулятор выведет из строя модуль Пельтье за 1-2 месяца.
  • К тому же элемент Пельтье обладает высокой теплопроводностью между поверхностями. При выключении, тепло радиатора горячей стороны, через модуль будет передаваться на холодную сторону.
  • Недопустимо , для регулирования мощности на элементе Пельтье, использовать ШИМ модуляцию .
  • Чем надо питать элемент Пельтье источником тока или напряжения? Обычно используют источник напряжения. Он проще в реализации. Но вольт-амперная характеристика модуля Пельтье нелинейная и крутая. Т.е. при небольшом изменении напряжения ток меняется значительно. И вдобавок, характеристика меняется при изменении температуры поверхностей модуля. Надо стабилизировать мощность , т.е. произведение тока через модуль на напряжение на нем. Охлаждающая способность элемента Пельтье напрямую связана с электрической мощностью. Конечно, для этого необходим достаточно сложный регулятор.
  • Напряжение модуля зависит от количества термопар в нем. Чаще всего это 127 термопар, что соответствует напряжению 16 В. Разработчики элементов рекомендуют подавать до 12 В , или 75% Umax. При таком напряжении обеспечивается оптимальная эффективность модулей.
  • Модули имеют герметичное исполнение, их можно использовать даже в воде.
  • Полярность модуля отмечена цветами проводов – черный и красный. Как правило, красный (положительный) провод расположен справа, относительно холодной стороны.

Мною был разработан для холодильника, удовлетворяющим всем этим требованиям. Он:

  • Вырабатывает питание для элемента Пельтье с пульсациями не более 2%.
  • Стабилизирует на модуле электрическую мощность, т.е. произведение тока на напряжение.
  • Обеспечивает плавное включение модуля.
  • Регулировка температуры происходит по принципу аналогового регулирования, т.е. плавного изменения мощности на элементе пельтье.
  • Контроллер разработан для холодильника, поэтому математика регуляторов учитывает инерционность охлаждения воздуха в камере.
  • Обеспечивает контроль температуры горячей стороны модуля и управление вентилятором.
  • Имеет высокий кпд, широкие функциональные возможности.

Термоэлектрический модуль Пельтье TEC1-12706.

Это самый распространенный тип элемента Пельтье. Используется во многих бытовых приборах. Не дорогой, с неплохими параметрами. Хороший вариант для изготовления маломощных холодильников, охладителей воды и т.п.

Характеристики модуля TEC1-12706 привожу в переводе на русский из документации компании производителя – HB Corporation.

Технические параметры TEC1-12706.

Графические характеристики.

0 Рубрика: . Вы можете добавить в закладки.

В 1834 году французский учёный-физик Жан Шарль Пельтье, исследуя воздействие электричества на проводники, обнаружил очень интересный эффект. Если пропускать ток через два разнородных проводника, находящихся в непосредственной близости друг от друга, то один из этих проводников начинает сильно греться, а второй, наоборот, сильно охлаждаться. Количество выделяемого и поглощаемого тепла, напрямую зависит от силы и направления электрического тока. Если поменять направление тока, то поменяются местами холодная и горячая стороны. Чуть позже этот феномен получил название эффекта Пельтье и был благополучно забыт из-за практической невостребованности на тот момент.

И лишь спустя сто с лишним лет, с расцветом полупроводниковой эры , появилась настоятельная необходимость в компактных, недорогих и эффективных охладителях. Так, в 60х годах 20 века появились первые полупроводниковые термоэлектрические модули, которые получили название элементы Пельтье.

В основе любого термоэлектрического модуля лежит тот факт, что разные проводники имеют разные уровни энергии электронов. Иными словами, один проводник можно представить как высокоэнергетическую область, второй проводник, как низкоэнергетическую область. При контакте двух токопроводящих материалов, во время пропускания через них электрического тока, электрону из низкоэнергетической области необходимо перейти в высокоэнергетическую область.

Этого не произойдет, если электрон не приобретёт необходимое количество энергии. В момент поглощения этой энергии электроном, происходит охлаждение места контакта двух проводников. Если поменять направление протекания тока, возникнет, наоборот, эффект нагревания места контакта.

Можно использовать любые проводники , но этот эффект становится физически заметным и значимым только в случае использования полупроводников. Например, при контактировании металлов, эффект Пельтье настолько незначителен, что практически незаметен на фоне омического нагрева.

Термоэлектрический модуль (ТЭМ), независимо от своего размера и места применения состоит из разного количества, так называемых термопар. Термопара - это тот самый кирпичик, из которых строится любой ТЭМ. Она состоит из двух полупроводников различающихся типом проводимости. Как известно, существуют два типа проводимости p и n типа. Соответственно существует и два типа полупроводников. Два этих разнородных элемента соединяются в термопаре с помощью медного мостика. В качестве полупроводников применяют соли таких металлов, как висмут, теллур, селен или сурьма.

ТЭМ - совокупность подобных термопар, соединённых друг с другом последовательно. Все термопары располагаются между двух керамических пластин. Пластина Пельтье. Пластины изготовлены из нитрида или оксида алюминия. Непосредственно само количество термопар в одном элементе может варьировать в очень широких пределах , от нескольких штук, до нескольких сотен или тысяч.

Иными словами, элементы Пельтье могут быть абсолютно любой мощности, от сотых долей, до нескольких сот или тысяч ватт. Постоянный ток последовательно проходит через все термопары и в результате верхняя керамическая пластина охлаждается, а нижняя, наоборот, греется. Если поменять направление тока, то пластины поменяются местами, верхняя начнёт греться, а нижняя охлаждаться.

В работе элемента присутствует одна особенность, которую активно используют для усиления охлаждающей эффективности этого приспособления. Как известно, при пропускании тока через элемент Пельтье возникает разность температур между поверхностью, разогревающейся и поверхностью охлаждающейся. Так вот, если ту поверхность, что активно нагревается подвергнуть принудительному охлаждению. Например, с помощью специального кулера, то это приведёт к ещё более сильному охлаждению поверхности, то есть той, что охлаждается. При этом разница температур с окружающим воздухом может достигнуть нескольких десятков градусов.

Достоинства и недостатки

Как у любого технического устройства, у термоэлектрического модуля есть свои достоинства и свои недостатки:

Проблема повышения КПД у ТЭМов упирается в неразрешимую пока, техническую головоломку. Свободные электроны обладают, по сути, двойной природой, что на практике проявляется и они одновременно являются переносчиками как электрического тока, так и тепловой энергии. Как следствие, высокоэффективный элемент Пельтье должен быть изготовлен из материала, обладающего одновременно двумя взаимоисключающими свойствами. Материал этот должен хорошо проводить электрический ток и плохо проводить тепло. Пока такого материала не существует в природе, но учёные активно работают в этом направлении.

Все термоэлектрические модули обладают соответствующими техническими характеристиками:

Применение ТЭМов

Несмотря на серьёзный недостаток присущий всем без исключения элементам Пельтье, а именно очень низкий КПД, эти устройства нашли довольно широкое применение как в науке и технике, так и в быту.

Термоэлектрические модули являются важными элементами конструкции таких устройств, как:

Элемент Пельтье в руках домашнего мастера

Нужно сразу оговориться, самостоятельное изготавливание термоэлектрического элемента занятие по меньшей мере бессмысленное и никому не нужное. Если только изготавливающий не является учеником седьмого класса и не закрепляет таким образом, полученные на уроках физики, знания.

Гораздо проще купить новый термоэлектрический элемент в соответствующем магазине. Благо стоят они недорого и недостатка в выборе конкретной модели не наблюдается. А кроме того, что в них нечему ломаться или изнашиваться, любой термоэлемент, снятый со старого компьютера или автомобильного кондиционера, не будет отличаться по своим техническим характеристикам от нового.

Наибольшей популярностью пользуется модель термоэлемента: TEC1-12706. Размеры этого устройства 40 на 40 миллиметров. Состоит он из 127 термопар, соединённых между собою последовательно. Рассчитан на ток в 5 А, при напряжении цепи 12 В. Стоит такой элемент в среднем от 200 до 300 рублей. Но можно найти и за сто, или, вообще, за так, если снять со старого компьютера или какого другого ненужного устройства.

Изготовить с помощью такого элемента можно, как минимум два очень интересных и полезных в хозяйстве устройства.

Как сделать холодильник своими руками

Производство портативных холодильников, в частности, для машин целиком основано на эффекте Пельтье. Для изготовления подобного устройства в домашних условиях понадобиться:

  • Термоэлемент марки TEC1-12706. Стоит 200 рублей в ближайшем магазине (специализированном).
  • Радиатор и вентилятор. Снимаются с отслужившего своё старого компьютера.
  • Контейнер. Любая ненужная ёмкость из пластика, металла или дерева. Снаружи и изнутри такая ёмкость оклеивается теплосберегающими пластинами из пенопласта или пенополистирола.

Термоэлектрический модуль встраивается в крышку контейнера. В этом случае поступление холода будет происходит сверху вниз, что приведёт к равномерному охлаждению ёмкости. Изнутри контейнера, в его крышку с помощью термопасты и крепёжных болтов прикрепляют радиатор.

Для того чтобы увеличить мощность будущего холодильного устройства, можно увеличить количество термоэлементов, до двух-трёх и более. В этом случае модули приклеиваются друг к другу, с соблюдением полярности. Иными словами, горячая сторона нижележащего элемента контактирует с холодной стороной вышележащего.

Снаружи на крышку крепится ещё один радиатор вместе с компьютерным кулером. В месте крепежа радиаторов должна быть хорошая термоизоляция между холодной - внутренней и горячей - внешней сторонами. Необходимо очень аккуратно стягивать верхний и нижний радиаторы крепёжными болтами, чтобы не треснули керамические пластины, располагающихся между ними термоэлементов.

Электричество подключается с помощью блока питания, который можно взять от старого компьютера .

Портативный термоэлектрогенератор

Такая мини-электростанция может очень выручить туриста или охотника, когда в лесу сядут батареи всех электронных гаджетов. Очень романтично в этой ситуации взять несколько сухих щепок и шишек, развести небольшой костерок и с его помощью зарядить разряженные аккумуляторы, а заодно и поесть приготовить. Именно это позволяет сделать портативный термогенератор, построенный на термоэлементе.

Для постройки этого чудо-девайса необходимо наличие портативной походной печки, работающей на любом виде топлива. В крайнем случае сгодится даже небольшая свечка или таблетка сухого спирта.

В печке разводят огонь, а снаружи с помощью термопасты к ней крепится термоэлектрический модуль. Посредством проводов он подключается к преобразователю напряжения.

Величина получаемого тока напрямую будет зависеть от разницы температур между холодной и горячей сторонами термоэлемента. Для эффективной работы необходима разница между холодной и горячей поверхностью как минимум в 100 градусов.

В этом случае необходимо понимать, что максимальная температура ограничена температурой плавления припоя, с помощью которого изготовлен сам модуль. Поэтому для подобных устройств используют специальные термомодули, которые изготавливают с помощью специального тугоплавкого припоя. В обычных модулях температура плавления припоя составляет 150 градусов. В модулях тугоплавких, припой начинает плавиться при температуре 300 градусов.

Элемент пельтье своими руками

В английском языке термин упоминается как ТЕС - термоэлектрический охладитель. Элемент пельтье своими руками представляет собой температурно электрический преобразователь, который работает по принципу возникновения разницы температур в момент подачи электрического тока. Возможно ли собрать его самостоятельно и какое применение ему найти?

Элемент пельтье своими руками

Изготовить устройство в домашних условиях практически невозможно, тем более это не имеет особого смысла, учитывая его невысокую рыночную стоимость.

Но большинство умельцев все же предпочитает мастерить элемент пельтье своими руками, ссылаясь на ряд его достоинств:

  1. Компактность, удобство установки на самодельное электронное плато.
  2. Отсутствие движущихся деталей, что увеличивает сроки его эксплуатации.
  3. Возможность соединения нескольких элементов в каскадной схеме для снижения очень больших температур.

Тем не менее, пельтье своими руками имеет определенные недостатки: низкий коэффициент полезного действия (КПД), необходимость подачи высокого тока для получения заметного перепада температуры, сложность отведения тепловой энергии от охлаждаемой поверхности.

Рассмотрим на примере схем, как сделать пельтье своими руками:

  • Задействовать его в качестве детали термоэлектрического генератора, согласно рисунку подключения.
  • Собрать простой преобразователь на микросхеме ИМС L6920 (рисунок 1).
Рисунок 1. Элемент пельтье своими руками: универсальная схема
  1. Подать на вход получившегося преобразователя напряжение диапазоном 0.8-5.5В, чтобы иметь на выходе стабильные 5В.
  2. При использовании устройства обычного типа - поставить лимит температуры нагреваемой стороны в 150 градусов.
  3. Для калибровки - в качестве источника тепла использовать емкость с кипящей водой, которая точно не нагреется свыше 100 градусов.

Описание технологии и принцип действия

Способ работы термоэлектрического охладителя достаточно прост. Эффект пельтье своими руками основывается на контакте двух проводников тока, обладающих разным уровнем энергии электронов в зоне своей проводимости.


Рисунок 2. Принцип действия элемента

При подаче электротока через такую связь, электрон приобретает высокую энергию, позволяющую ему перейти в более высокоэнергетическую зону проводимости второго полупроводника. Когда эта энергия поглощается, происходит остуживание места охлаждения проводников (рисунок 2).

При протекании процесса в обратном направлении - реакция приводит к нагреванию контактного места и обычному тепловому эффекту.

Посмотрев пельтье своими руками видео, можно сделать определенные выводы о принципе его действия:

  1. Величина подаваемого тока будет пропорциональной степени охлаждения - если с одной стороны модуля сделать хороший теплоотвод, при использовании радиаторных схем, его холодная сторона обеспечит максимально низкую температуру.
  2. При смене полярности тока - нагревающая и охлаждающая плоскости меняются метами.
  3. При контакте объекта с металлической поверхностью, он становится настолько мал, что его нельзя увидеть на фоне омического нагрева, других эффектов теплопроводности, поэтому на практике применяют два полупроводника.
  4. Благодаря разнообразному количеству термопар - от 1 до 100, можно добиться практически любого показателя холодильных мощностей.

Технические характеристики элемента пельтье

Компонент получил широкое применение в различных холодильных схемах.

Что неудивительно, так как пельтье своими руками имеет следующие технические характеристики:

  1. Способен достигнуть низких температур, что служит отличным решением для охлаждения электрических приборов и тех оборудования, подвергающегося нагреву.
  2. Прекрасно выполняет работу обычного куллера, что делает возможным его установку в современные звуковые и акустические системы.
  3. Абсолютно бесшумен - в процессе работы не издает никаких посторонних и интенсивных звуков.
  4. Обладает мощной теплоотдачей при сохранении нужной температуры на радиаторе достаточно продолжительное время.

Холодильник на элементах пельтье своими руками

Чтобы собрать холодильный агрегат вам понадобятся достаточное количество электрических проводников и специальные инструменты (рисунок 3).

Холодильник на пельтье своими руками требует особого подхода к сборке и используемым материалам:

  1. Основой для платы должна служить прочная керамика;
  2. Для максимального температурного перепада надо подготовить не менее 20 связей;
  3. Правильные расчеты - залог увеличения коэффициента полезного действия на 70%;
  4. Наибольшую мощность используемому оборудованию даст фреон;
  5. Самодельный модуль устанавливается возле его испарителя, рядом с мотором;
  6. Монтаж производится стандартным набором инструментом с применением прокладок;
  7. Они необходимы для изолирования рабочей модели от пускового реле;
  8. Изоляция понадобится и для самой проводки, перед ее подключением к компрессору;
  9. Чтобы избежать короткого замыкания, сила предельного напряжения звонится тестером.

Рисунок 3. С помощью элемента пельтье можно легко собрать походный холодильник

Подобную схему можно применить для автомобильного охладителя. Автохолодильник пельтье своими руками собирается на керамической плате толщиной не менее, чем 1 миллиметр. В нем используются медные немодульные связи с пропускной способностью в 4А и применяются проводники с маркировкой «ПР20», подходящие для контактов разного типа. Для соединения устройства с конденсатором используют обычный паяльник.

Кондиционер пельтье своими руками

В данном случае, для изделия могут применяться только проводники типа «ПР12» (рисунок 4).

Кондиционер пельтье своими руками собирается только на них, так как они выдерживают аномальные температуры и выдают напряжение до 23В:

  1. Применяется в основном для охлаждения компьютерных видеокарт.
  2. Его сопротивление колеблется в пределах 3 Ом.
  3. Температурный перепад равен 10 градусам, а КПД - 65%.
  4. Для него требуется 14 медных проводничков.
  5. Для подключения задействуется немодульный переходник.
  6. Устройство монтируется рядом с встроенным кулером на видеокарте.
  7. Конструкция крепится металлическими уголками и обычными гайками.

Рисунок 4. Элемент используется и для создания портативных кондиционеров

Если во время работы кондиционера замечаются сильные посторонние шумы, другие нехарактерные звуки - он проверяется на работоспособность мультиметром.

Генератор пельтье своими руками

Самостоятельно собрать подобный прибор не так и сложно. Генератор пельтье своими руками имеет свои особенности: производительность собранного устройства поднимается на 10% за счет большего охлаждения мотора, но нагревать основные комплектующие до показателя свыше 200 градусов не рекомендуется. Прибор выдерживает максимальную нагрузку в 30А, а его сопротивление способно составлять 4Ом благодаря большему количеству проводников (рисунок 5).

Стоит помнить, что генератор на элементах пельтье своими руками:

  1. Имеет температурное отклонение в системе, примерно равное 13 градусам.
  2. В большинстве случаев сборки и разборки конструкции, статор им не мешает.
  3. Модуль крепится непосредственно к ротору, для чего нужно отсоединять центральный вал.
  4. Во избежание нагрева роторной обмотки от индуктора, следует использовать керамические пластины.

Рисунок 5. Элемент пельтье поможет создать походный генератор

Теплогенератор на пельтье своими руками собирается из двух пластин 10*10см, толщиной в 1мм, закрепленных термопастой, которые закрывают собой четыре искомых модуля. Поверх них ставится консервная банка или любая другая емкость для розжига огня, которая обеспечит 170-180 градусов. К нижней части одной из пластин прикрепляется при помощи винтов медный или алюминиевый радиатор. К нему присоединяется еще одна пластинка 20*12см, к которой крепится еще одна такая деталь. На нее устанавливается заводской кожух от аккумулятора, к которому припаивается разъем для зарядки смартфона.

Осушитель пельтье своими руками

В отличие от того же кондиционера, реализация этой идеи вполне себя оправдывает. Осушитель пельтье своими руками имеет простую конструкцию и низкую себестоимость, а его охлаждающий модуль понижает температуру радиатора ниже точки росы, что приводит к оседанию на нем влаги, содержащейся в воздухе, проходящем через прибор. Далее - осевшая вода отправляется в специальный накопитель (рисунок 6).

Несмотря на невысокий КПД, эффективность такого устройства можно назвать вполне удовлетворительной.

Осушитель воздуха своими руками пельтье:

  1. Подключается без проблем - на провода выходов подается постоянное напряжение, величина которого прописана в его даташит.
  2. Имеет стандартную полярность - красный проводок идет на плюс, черный - на минус, если их перепутать охлаждаемая и нагреваемая поверхности поменяются местами.
  3. Проверяется тактильно - при подключении к источнику напряжения одна сторона будет холодной, вторая - теплой.
  4. Если источника тока поблизости нет - подключаем щупы к выводам модуля и подносим зажженную спичку или зажигалку к одной из сторон, наблюдаем за показаниями прибора.

Рисунок 6. Схема сборки осушителя воздуха

Как подключить элементы пельтье на модуле

Если речь идет о простом регуляторе, сложностей в подключении при наличии схемы возникнуть не должно. Модуль пельтье своими руками состоит из двух металлических пластинок и проводки с контактами. Для ее установки готовят проводники «РР» и располагают их у основания. Для контроля за температурным режимом применяют на выходе полупроводники. Чтобы собрать все компоненты воедино используют паяльник средней мощности. В последнюю очередь подсоединяют два провода, по которым проходит электроток.

Модуль пельтье своими руками имеет следующие нюансы подключения:

  1. Первый токопроводящий провод монтируется у нижнего основания конструкции.
  2. Он фиксируется возле крайнего проводящего звена.
  3. При этом стоит избегать любых соприкосновений с металлической деталью.
  4. Далее крепится второй такой проводок в верхней части.
  5. Его фиксируют аналогично предыдущему.

Тестируем модуль пельтье, собранный своими руками

Учитывая простоту сборки, самостоятельно изготовить приспособление не сложно. Протестировать элемент пельтье своими руками из диодов, как и любой другой, тоже не представляет труда. Главное на начальных этапах использовать правильные материалы - подготовить две металлические пластины и проводку с нужными контактами, полупроводники с маркировкой «РР». Проверить все на исправность можно при помощи мультиметра или обычного тестера, при этом диоды должны светиться при подключении устройства к сети.

Похожие публикации