Расчет винта квадрокоптера. Как спроектировать собственный квадрокоптер. Балансировка пропеллеров с помощью подручных средств

Эта небольшая статья содержит базовую информацию о пропеллерах для квадрокоптера (иногда их называют реквизитами) и рассказывает о том, как шаг, форма и количество лопастей влияют на их производительность, тягу и эффективность.

Основные понятия

Параметры реквизитов определяются их длиной, шагом, площадью, направлением вращения, а также формой и количеством лопастей

Длина и шаг

Эти параметры являются главными. Под длиной понимают диаметр диска, образующегося при вращении пропеллера. Шаг может быть определен как расстояние, которое пропеллер может пройти в некоей твердой среде за один полный оборот (вспомните, как входит в доску самый обыкновенный шуруп). При прочих равных условиях, величина шага определяется наклоном (углом атаки) лопастей квадрокоптера.

Тяга винтомоторной группы (ВМГ) определяется объемом воздуха, который ее винты способны переместить. Понятно, что увеличение длины и/или шага пропеллеров при сохранении их скорости вращения положительно сказывается на тяге, но, к сожалению, увеличивает и сопротивление воздуха за счет растущей турбулентности. Для вращения более крупного винта или винта с большим углом наклона лопастей будет затрачено больше энергии, что приведет к снижению времени полета при прочих равных условиях.

Крупные винты с малым шагом идеально подходят для аэрофотосъемки, а небольшими пропеллерами с большим шагом оснащаются гоночные дроны.

Количество и форма лопастей

Классическим вариантом является наличие у пропеллера двух лопастей. Впрочем, на самых маленьких моделях применяют воздушные винты с тремя, четырьмя и даже пяти лопастями. Понятно, что многолопастный воздушный винт снижает уровень турбулентности за счет создания более равномерного потока. Более того, дополнительные лопасти увеличивают общую площадь винта, что благотворно отражается на подъемной силе квадрокоптера. Из этого следует, что многолопастный винт меньшего диаметра способен создавать ту же подъемную силу, что и более крупный классический пропеллер. Многолопастные пропеллеры делают летательный аппарат более отзывчивым, что очень важно при полетах в режиме Acro . Основным недостатком таких винтов является сложность изготовления и центровки, а также достаточно высокая стоимость.

Советуем обратить внимание на разницу в форме окончания реквизитов. Они бывают трех видов - Normal, Bullnose (BN), Hybrid Bullnose (HBN). Винты Normal имеют заостренные на концах лезвия, создают меньшую тягу, но способствует эффективному расходу энергии аккумулятора. Винты BN при равном диаметре имеют большую площадь и тягу. Дополнительный вес на кончиках лопастей увеличивает крутящий момент и улучшает чувствительность летательного аппарата по оси рысканья. К сожалению, эти положительные моменты сопровождаются высоким энергопотреблением и снижением времени полета. Пропеллеры HBN занимают промежуточную позицию.

Направление вращения

На мультикоптерах используются два типа двигателей - CW (с вращением вала по часовой стрелке) и CCW (с вращением вала против часовой стрелки). Схема установки моторов зависит от типа летательного аппарата. Несколько таких схем показаны на рисунке.

На направление вращения конкретного пропеллера указывает приподнятая кромка его лопастей.

Материал и качество

Наиболее популярны пластиковые винты. Они отличаются пластичностью, низкой ценой, широким ассортиментом и высокой степенью доступности. С одной стороны, гибкость лопастей повышает их устойчивость к повреждениям, с другой - вызывает проблемы с балансировкой.

Некоторые фирмы выпускают винты из углеродного волокна. Карбоновые винты довольно дороги, но обладают необходимой жесткостью и высокой эффективностью без значительного увеличения веса.

Промежуточное положение занимают пропеллеры, выполненные из пластика, усиленного углеродным волокном. Этот тип пропеллеров обладает высокой жесткостью и сравнительно низкой стоимостью.

Качество винтов подразумевает точность их изготовления. Высококлассные пропеллеры хорошо сбалансированы и практически не вносят дополнительную вибрацию в работу ВМГ. Лучшие реквизиты выпускаются под брендами GWS, APC и EMP.

Спецификация

Узнать о параметрах конкретного пропеллера для квадрокоптера можно по его кодировке. Производители используют два типа обозначений: LLPPxB или LxPxB. Здесь L обозначает длину, P - шаг, а B - количество лопастей. Для классических пропеллеров параметр B обычно не указывается.

Например, пропеллер 6045 (или 6×4,5) имеет две лопасти, шестидюймовую длину и шаг 4,5 дюйма. Другим примером является пятидюймовый трехлопастный пропеллер 5040×3 (или 5x4x3), имеющий шаг 4 дюйма.

Иногда в конце обозначения ставится буква R или C (может отсутствовать), определяющая направление вращения. Воздушные винты R устанавливаются на двигатели CW, а C - на моторы CCW. Изредка к обозначению добавляются аббревиатуры BN или HBN (см. выше).

Методы установки

Установить винты на квадрокоптер можно по-разному. Очень часто вал электродвигателя представляет собой простой металлический штырь, не имеющий каких-либо приспособлений для установки пропеллера. В этом случае применяют специальные переходники - пропсейверы и цанговые зажимы.

Пропсейвер (см. фото) удобно использовать для проведения экспериментов при создании самодельных моделей. Он выглядит как втулка, в боковой поверхности которой имеется два симметричных отверстия с установленными в них винтами. Приспособление устанавливается на вал, а винты затягиваются. Пропеллер также надевается на вал и фиксируется двумя нейлоновыми стяжками или резиновым кольцом.

Более надежным переходником является цанговый зажим. Он представляет собой резьбовое соединение с разрезной конусообразной втулкой. Цанга надевается на вал, далее устанавливается зажимная втулка, пропеллер и шайба. Вся конструкция фиксируется гайкой особой формы - коком.

Если ротор бесколлекторного двигателя находится снаружи (моторы класса Outrunner), то на его верхней поверхности обычно имеется несколько резьбовых отверстий для установки различных переходников и креплений.


У производителей готовых коптеров с бесколлекторными моторами очень популярен вариант с самозатягивающимися гайками от компании DJI . У таких двигателей вал заканчивается резьбой, противоположной направлению вращения ротора.

Балансировка пропеллеров

Можно с уверенностью сказать, что большинство пропеллеров, особенно дешевых, нельзя назвать сбалансированными на 100%. Такие винты не только раздражающе сильно шумят, но и вносят дополнительную вибрацию в работу ВМГ. Из-за этого, в частности, снижается качество воздушных съемок (эффект желе). Хуже того, постоянные колебания вызывают дополнительный износ двигателей, подшипников и шестерней, что повышает стоимость обслуживания летательного аппарата.

Как видим, без процедуры балансировки винтов для квадрокоптера нам не обойтись. Для этого понадобятся:

  • Винт;
  • Скотч или суперклей (можно заменить лаком для ногтей);
  • Наждачная бумага;
  • Специальный балансир пропеллеров Du-Bro Tru-Spin - один из лучших, или китайские аналоги .

Прежде всего, нужно выставить само приспособление для балансировки так, чтобы его ось была строго горизонтальной.

Лопасть проверяется на отсутствие повреждений, устанавливается на ось и слегка отклоняется в ту или иную сторону. Если он не возвращается в горизонтальное положение, нужно облегчить (подчистить наждачной бумагой) более тяжелое лезвие или наклеить кусочек липкой ленты на более легкое. Необходимо повторять процедуру до тех пор, пока лезвия не уравновесятся. Липкую ленту успешно заменяет мазок суперклея или лака.

Ось балансировочного станка переворачивается - нужно убедиться, что пропеллер сохраняет равновесие и в этом положении. Отметим, что все подчистки и наклеивания должны выполняться на внутренних (вогнутых) поверхностях лопастей.

Следующим шагом будет балансировка ступицы. Для этого пропеллер устанавливается вертикально. Если он отклоняется вправо, нужно утяжелять клеем или лаком левую часть ступицы и наоборот. Добиваемся баланса, переворачиваем пропеллер и убеждаемся, что в этом положении он также уравновешен. Процедура закончена.

Калькулятор eCalc

Многим создателям беспилотных моделей известен on-line калькулятор eCalc, предназначенный для расчёта параметров винтомоторной установки летательных аппаратов. Страница калькулятора, посвященная мультикоптерам, выглядит приблизительно так.

На первый взгляд, все понятно, но есть несколько нюансов, которые могут повлиять на результаты вычислений.

Прежде всего, вводится полный взлетный вес мультикоптера (с подвесом и камерой, если таковые имеются). Если будет указано Without Drive (Без привода), то вводим суммарный вес рамы, пропеллеров, платы контроллера, подвеса, камеры и оборудования для FPV полетов. Добавим процентов 10 на массу проводов и получаем искомую цифру.

Вводим количество роторов, их схему (одиночная или соосная), максимальную высоту полета и погодные условия, при которых он будет проводиться (температуру за бортом и атмосферное давление).

Продолжим наши занятия на тему квадрокоптера 🙂

Как уже замечал автор, управление тягой моторов осуществляется специальным микроконтроллером, который обрабатывает показания датчиков наклона и ускорения. Количество датчиков зависит от того, насколько автономной планируется система квадрокоптер – пилот.

Давайте рассмотрим основные составные части части квадрокоптера:

  • Рама – основа всей конструкции, которая соединяет между собой все остальные части. Должна быть прочной и в то же время легкой.
  • Двигатели, которые обеспечивают необходимую тягу для подъема квадрокоптера в воздух.
  • Обороты каждого двигателя управляются отдельными контроллерами
  • Пропеллеры (несущие винты)
  • Источники питания – батареи или аккумуляторы
  • Датчики ускорении/ угла наклона
  • Микроконтроллер – мозг аппарата
  • Приборы дистанционного управления
  • Дополнительное оборудование

Рама (так же известна как крестовина)

Рама предназначена для соединения все компонентов конструкции в одно целое. Рама должна быть достаточно жесткой и в то же время обладать способностью гасить вибрации роторов.

Рама квадрокоптера , как правило, состоит из двух либо трех частей. Они не обязательно должны состоять из одного и того же материала.

  • Центральная плита, на которую монтируются электронные компоненты
  • Крестовина из 4 симметричных балок, которые крепятся к центральной плите
  • Четыре мотогондолы, которые крепят двигатели к законцовкам балок крестовины.

Примечание переводчика: выражение «две или три части», вероятно означает, что с целью облегчения конструкции, центральная плита для размещения электроники, иногда не предусмотрена.

Для рамы подходят следующие материалы:

  • Карбон
  • Алюминий и его сплавы
  • Дерево, например, фанера или МДФ

Наиболее предпочтительным для использования является карбон, из – за его жесткости и вибропоглощающих свойств, однако, и цена зачастую делает его недоступным для рядовых энтузиастов авиастроения:).

Популярностью при создании разного рода квадрокоптеров пользуются пустотелые алюминиевые профили (в основном – П-образные). Это вызвано их относительно низким весом, жесткостью и приемлемой ценой. В то же время, по сравнению с карбоном (углепластиком) , алюминий меньше поглощает вибрации, что может привести к искажению показаний датчиков. Фото именно такой крестовины приведено в заголовке статьи.

Плиты на основе древесины, например, МДФ – плиты или фанера также с успехом используются для создания квадрокоптеров из-за приемлемых вибропоглощающих характеристик. Однако, такие материалы не обладают высокой прочностью и могут быть легко повреждены в случае катастрофы. Несмотря на то, что материал центральной плиты не играет такой же важной роли, как материал для балок крестовины, чаще всего для ее изготовления применяется фанера как легкий и легко обрабатываемый материал, который хорошо поглощает вибрацию.

Для обозначения длины каждой из перекладин крестовины квадрокоптера иногда применяют термин «междвигательное расстояние», то есть дистанцию между валами противоположных роторов.


Междвигательное расстояние

Бесколлекторные двигатели


Бесколлекторный двигатель изнутри

Небольшое введение в теорию электродвигателей. Бесколлекторные двигатели, как и электродвигатели постоянного тока классической схемы, используют катушки с проводом и магниты для вращения приводного вала. Катушки в бесколлектроных двигателях расположены на внутренней стороне кожуха двигателя, и соответственно, в их конструкции отсутствуют щетки, предназначенные для передачи электрического тока на расположенные на валу катушки.


И снаружи

Магниты в бесколлекторных двигателях расположены в цилиндре, насаженном на вал двигателя. Таким образом, провода питания присоединяются непосредственно к обмоткам катушек что исключает необходимость использования щеток.


Устройство и принцип действия . Обратите внимание на расположение магнитов.

Преимуществом бесколлекторных двигателей является гораздо более высокая скорость вращения , а также меньшее энергопотребление в режимах работы, сравнимых с двигателями классической схемы. Кроме того, в бесколлекторных двигателях отсутствуют потери мощности из-за трения и искрения щеток и токосъемников, что делает их более энергоэффективными.

Существующие бесколлекторные двигатели в первую очередь различаются размерами и относительно малым потреблением энергии. При выборе двигателя для вашего квадрокоптреа, необходимо принять во внимание вес и размеры двигателей, характеристики несущих винтов, а также их соответствие относительному потреблению двигателей, которое описывается термином «kV Rating».

«kV Rating» показывает, сколько оборотов в минуту будет выдавать двигатель при определенном напряжении. Количество оборотов в минуту высчитывается по простой формуле: RPM=Kv*U (количество оборотов = напряжению питания умноженному на «kV Rating» ). Для упрощения расчетов, автор предлагает использовать онлайн – калькулятор eCalc , который считает прекрасным инструментом, который поможет рассчитать характеристики компонентов квадрокоптера в зависимости от запланированной грузоподъемности.

ВАЖНО! Не забудьте, что для квадрокоптреа необходимы две пары двигателей с противоположными направлениями вращения.

Пропеллеры (несущие винты)

Наверняка, на изображениях квадрокоптеров вы не заметили, что все их четыре винта не идентичны. Если приглядеться, можно заметить, что передний и задний несущие винты имею правый изгиб, в то время как на перепендикулярном плече крестовины несущие винты изогнуты наоборот .

Как автор указывал ранее, для предотвращения раскрутки аппарата, 2 ротора вращаются в одном направлении, в то время как два других – в противоположном. Пары воздушных винтов, которые вращаются в противоположных направлениях и имеют противоположное направление изгиба, обеспечивают подъемную силу в одном направлении без рысканья по курсу. Это и придает квадрокоптеру его знаменитую курсовую устойчивость.

Промышленно изготовленные воздушные винты для квадрокоптеров изготавливаются в разных диаметрах и с разными степенями изгиба (англ. – pitch, далее – шаг винта). Выбор пропеллера зависит от размаха балок несущей крестовины и определяет выбор двигателей. Ниже приведены несколько типоразмеров несущих винтов в зависимости от размеров квадрокоптеров.


Пары несущих винтов правого или левого шага
  • EPP1045 10 diameter and 4.5 pitch — самый популярный, используется в проектах среднего размера.
  • APC 1047 10 diameter and 4.7 pitch — весьма похож на вариант № 1
  • EPP0845 8 diameter and 4.5 pitch как правило, применяется в малых квадрокоптерах
  • EPP1245 12 diameter and 4.5 pitch – для больших аппаратов, которым необходима значительная тяга
  • EPP0938 9 diameter and 3.8 pitch для маленьких квадрокоптеров

Аэродинамика никогда не была легкой наукой. Да же не думайте, что теорию воздушного винта можно уложить в несколько слов или даже часов. Однако, в общем, тему несущего винта в вертолете можно свести к двум следующим соотношениям:

  1. Больший диаметр и шаг воздушного винта определяет его большую тягу и возможность поднять больший груз. В то же время, для вращения такого винта необходима большая мощность двигателя.
  2. При использовании высокоборотистых моторов вы можете позволить себе задействовать винты меньшего диаметра. Однако, в случае снижения скорости оборотов, тяги несущих винтов может не хватить для удержания аппарата и груза в воздухе и даже для их относительно мягкой посадки.

Соотношение шага, диаметра и скорости вращения воздушного винта

Диаметр винта определяет его площадь , в то время как шаг винта – его эффективную площадь , которая и создает тягу. Таким образом, при равных диаметрах, воздушный винт с большим шагом создаст большую тягу и обеспечит большую грузоподъемность при бОльших затратах мощности.

Увеличение скорости вращения воздушного винта увеличит скорость и маневренность летательного аппарата, однако наложит ограничение на полезную нагрузку вне зависимости от затраченной на подъем мощности. В то же время, сила тяги (и соответственно, затраченная на вращение винта мощность), увеличивается при увеличении эффективной площади воздушного винта. Это означает, что больший диаметр или шаг воздушного винта позволит создать большую тягу при той же скорости вращения и поднять большую полезную нагрузку.

При выборе комбинации компонентов винтомоторной группы вашего квадрокоптера, в первую очередь, необходимо определить его будущее назначение . Например, если вам нужна высокая стабильность для полетов со значительной нагрузкой типа видеокамеры, ваш выбор – двигатель с меньшей скоростью вращения, однако значительным крутящим моментом и несущие винты большего диаметра или со значительным шагом.

Несмотря на то что квадрокоптеры крайне модная тема, выбирать компоненты для сборки своего аппарата по-прежнему не так просто. Выбор деталей для конкретного проекта - это мучительный поиск оптимального сочетания веса, мощности и функ-циональности. Поэтому прежде, чем окунуться в мир бесчисленных интернет-магазинов и безымянных китайских производителей, давай проделаем подготовительную работу.

Что такое квадрокоптер и для чего это надо

Мультироторы, они же мультикоптеры или просто коптеры, - это беспилотные летательные аппараты, предназначенные для развлечения, съемки фото и видео с воздуха или отработки автоматизированных систем.

Коптеры обычно различают по числу используемых моторов - начиная от бикоптера с двумя моторами (как GunShip из фильма «Аватар») и заканчивая октакоптером с восемью. На самом деле число моторов ограничено только твоей фантазией, бюджетом и возможностями полетного контроллера. Классическим вариантом является квадрокоптер с четырьмя моторами, расположенными на перекрещивающихся лучах. Такую конфигурацию еще в 1920 году попытался соорудить француз Этьен Омишен (Étienne Oehmichen), и в 1922 году у него это даже получилось. По сути, это самый простой и дешевый вариант сделать летательный аппарат, способный без особых проблем поднимать в воздух небольшие камеры вроде GoPro. Но если ты собираешься взлетать с серьезной фото- и видеотехникой, то стоит выбирать коптер с большим числом моторов - это не только увеличит грузоподъемность, но и добавит надежности, если в полете выйдет из строя один или несколько моторов.

Теория полета

В теории полета (аэродинамике) принято выделять три угла (или три оси вращения), которые задают ориентацию и направление вектора движения летательного аппарата. Проще говоря, летательный аппарат куда-то «смотрит» и куда-то двигается. Причем двигаться он может не туда, куда «смотрит». Даже самолеты в полете имеют какую-то составляющую «сноса», которая уводит их от курсового направления. А вертолеты вообще могут летать боком.

Три эти угла принято называть крен, тангаж и рыскание. Крен - это поворот аппарата вокруг его продольной оси (оси, которая проходит от носа до хвоста). Тангаж - это поворот вокруг его поперечной оси (клюет носом, задирает хвост). Рыскание - поворот вокруг вертикальной оси, больше всего похожий на поворот в «наземном» понимании.

Основные маневры (слева направо): движение по прямой, крен/тангаж и рыскание

В классической схеме вертолета основной винт при помощи автомата перекоса лопастей управляет креном и тангажем. Так как основной винт обладает ненулевым сопротивлением воздуха, у вертолета возникает вращающий момент, направленный в сторону, противоположную вращению винта, и, чтобы его скомпенсировать, у вертолета есть хвостовой винт. Изменяя производительность хвостового винта (оборотами или шагом), классический вертолет управляет своим рысканием. В нашем же случае все сложнее. У нас есть четыре винта, два из них вращаются по часовой стрелке, два - против часовой. В большинстве конфигураций используются винты с неизменяемым шагом и управлять можно только их оборотами. Если они все будут вращаться с одинаковой скоростью, то они скомпенсируют друг друга: рыскание, крен и тангаж будут нулевыми.

Если мы увеличим обороты одного винта, вращающегося по часовой стрелке, и уменьшим обороты другого винта, вращающегося по часовой стрелке, то мы сохраним общий момент вращения и рыскание по-прежнему будет нулевым, но крен или тангаж (в зависимости от того, где мы сделаем ему «нос») изменятся. А если мы увеличим обороты на обоих винтах, вращающихся по часовой стрелке, а на винтах, вращающихся против часовой стрелки, уменьшим (чтобы сохранить общую подъемную силу), то возникнет вращающий момент, который изменит угол рыскания. Понятное дело, что все это будем делать не мы сами, а бортовой компьютер, который будет принимать сигнал с ручек управления, добавлять поправки с акселерометра и гироскопа и крутить винтами, как ему надо. Для того чтобы спроектировать коптер, необходимо найти баланс между весом, временем полета, мощностью двигателей и другими характеристиками. Все это зависит от конкретных задач. Все хотят, чтобы коптер летал выше, быстрее и дольше, но в среднем время полета составляет от 10 до 20 минут в зависимости от емкости аккумулятора и общего полетного веса. Стоит запомнить, что все характеристики связаны между собой и, к примеру, увеличение емкости аккумулятора приведет к увеличению веса и, как следствие, к уменьшению времени полета. Чтобы узнать, сколько примерно твоя конструкция будет висеть в воздухе и сможет ли вообще оторваться от земли, существует хороший онлайн-калькулятор ecalc.ch . Но прежде чем вбивать в него данные, нужно сформулировать требования к будущему аппарату. Будешь ли ты устанавливать на аппарат камеру или другую технику? Насколько быстрым должен быть аппарат? Как далеко тебе нужно летать? Давай посмотрим на характеристики различных компонентов.


PX4 - бортовой компьютер с полноценной UNIX-системой

Рама

Основной момент, который нужно решить при выборе рамы, - будешь ли ты использовать готовую раму или же делать ее сам. С готовой рамой все проще, да и заказывать в любом случае придется множество деталей. При этом, учитывая цены в китайских магазинах, самодельный вариант может оказаться дороже. С другой стороны, собственную раму в случае аварии будет проще починить. Ну и, естественно, своими руками можно сделать любую, даже самую сумасшедшую конструкцию. Рассмотрим поподробнее самосборный вариант.

Сделать раму можно из любых подручных материалов (дерево, алюминий, пластик и так далее). Можно подойти чуть серьезнее и выпилить ее на ЧПУ-станке из плетеного карбона, причем можно усложнить задачу и сделать складную конструкцию.

Самый простой вариант для любителей DIY - пойти в OBI, «Леруа Мерлен» или на строительный рынок и купить квадратную алюминиевую трубу 12 × 12, а также алюминиевый лист толщиной в 1,5 мм. Для того чтобы сделать раму из таких материалов типа «четыре палки и крепеж», достаточно дрели или ножовки по металлу. Но нужно быть готовым к тому, что такая конструкция прослужит недолго. Все-таки все эти профили делают из очень мягкого материала (АД31/АД33), при полетах он будет легко гнуться.


Oehmichen № 2, пилотируемый квадрокоптер французского инженере Этьена Омишена, запущенный в 1922 году

В качестве образца для твоей рамы можно взять упрощенную заводскую раму или же найти в интернете готовый чертеж. Более сложные материалы (например, углепластик) можно заменить на алюминий - если и получится тяжелее, то ненамного. В любом случае стоит обращать внимание на длину и симметричность лучей. Длина лучей выбирается исходя из диаметра используемых пропеллеров, так, чтобы после их установки расстояние между окружностями вращающихся винтов было не менее 1–2 см, и уж тем более эти окружности не должны пересекаться. Моторы, устанавливаемые на лучах, должны быть равноудалены от центра рамы, где будет располагаться «мозг», и (в большинстве случаев) находиться на одном расстоянии друг от друга, образуя равносторонний многоугольник.

При проектировании стоит учесть, что центр рамы должен совпадать с центром тяжести, поэтому установить аккумулятор сзади между лучами - плохая идея, если он не будет скомпенсирован грузом спереди, например камерой. Продумай, на что будет приземляться твой аппарат, для новичков можно посоветовать приспособить что-то мягкое на «пузе» или концах лучей, например плотный поролон или теннисные мячики. А также защити аккумулятор на случай неудачного приземления, например установи его между пластинами рамы или расположи под высокими посадочными лыжами.

info

Полет от первого лица (FPV) очень захватывает, особенно если пользоваться видео-очками и HeadTracker’ом, который будет повторять движения головы на подвесе FPV-камеры, создавая ощущение, что находишься в кабине пилота.

Моторы и пропеллеры

Из-за вращения моторов в разные стороны приходится использовать разнонаправленные пропеллеры: прямого вращения (против часовой) и обратного вращения (по часовой). Обычно используются двухлопастные пропеллеры, их легче балансировать и найти магазинах, в то время как трехлопастные дадут больше тяги при меньшем диаметре винта, но доставят много головной боли при балансировке. Плохой (дешевый и неотбалансированный) пропеллер может развалиться в полете или вызвать сильные вибрации, которые передадутся на датчики полетного контроллера. Это приведет к серьезным проблемам со стабилизацией и вызовет сильное смазывание и «желе» на видео, если ты снимаешь что-то с коптера или летаешь с видом от первого лица.

Регулятор скорости,
он же ESC

У любого пропеллера есть два основных параметра: диаметр и шаг. Их обозначают по-разному: 10 × 4.5, 10 × 45 или просто 1045. Это означает, что диаметр пропеллера 10 дюймов, а его шаг 4,5 дюйма. Чем длиннее пропеллер и больше шаг, тем большую тягу он сможет создавать, но при этом повысится нагрузка на мотор и увеличится потребление тока, в результате он может сильно перегреться и электроника выйдет из строя. Поэтому винты подбираются под мотор. Ну или мотор под винты, тут как посмотреть. Обычно на сайтах продавцов моторов можно встретить информацию о рекомендуемых пропеллерах и аккумуляторах для выбранного мотора, а также тесты создаваемой тяги и эффективности. Существуют и пропеллеры с изменяемым шагом, что в теории повысит маневренность, но в реальности добавит сложную механику, имеющую свойство изнашиваться и ломаться с последующим дорогостоящим ремонтом.

Также чем больше винт, тем больше его инерция. Если нужна маневренность, лучше выбрать винты с большим шагом или трехлопастные. Они при том же размере создают тягу в 1,2–1,5 раза больше. Понятно, что винты и скорость их вращения нужно подбирать так, чтобы они смогли создать тягу большую, чем вес аппарата.

И наконец, бесколлекторные моторы. У моторов есть ключевой параметр - kV. Это количество оборотов в минуту, которые сделает мотор, на поданный вольт напряжения. Это не мощность мотора, это его, скажем так, «передаточное число». Чем меньше kV, тем меньше оборотов, но выше крутящий момент. Чем больше kV при той же мощности, тем больше оборотов и ниже момент. При выборе мотора ориентируются на то, что в штатном режиме он будет работать при мощности 50% от максимальной. Не стоит думать, что чем kV больше - тем лучше, для коптеров с типичной 3S-батареей рекомендуемое число находится в диапазоне от 700 до 1000 kV.

info

Более прочный материал - дюраль (Д16Т). Практически не гнется, достаточно пружинистый, и его применяют в авиации. Профили из него в ОБИ не продаются, но можно поймать на Митинском рынке на третьем этаже, на рынке ТВЦ «Строй» тоже были.

Питание и контроллеры питания

Капитан подсказывает: чем больше мощность мотора, тем больше батарейка ему нужна. Большая батарейка - это не только емкость (читай, время полета), но и максимальный ток, которая она отдает. Но чем больше батарейка, тем больше и ее вес, что вынуждает скорректировать наши прикидки относительно винтов и моторов. На сегодняшний день все используют литий-полимерные батарейки (LiPo). Они легкие, емкие, с высоким током разрядки. Единственный минус - при отрицательных температурах работают плохо, но если их держать в кармане и подключать непосредственно перед полетом, то во время разряда они сами слегка разогреваются и не успевают замерзнуть. LiPo-элементы вырабатывают напряжение 3,7 В.

При выборе батареи стоит обращать внимание на три ее параметра: емкость, измеряемую в миллиампер-часах, максимальный ток разряда в емкостях аккумулятора (С) и число ячеек (S). Первые два параметра связаны между собой, и при их перемножении ты узнаешь, сколько тока сможет отдавать этот аккумулятор продолжительное время. Например, твои моторы потребляют 10 А каждый и их четыре штуки, а батарея имеет параметры 2200 мА · ч 30/40C, таким образом, коптеру требуется 4 10 A = 40 A, а батарея может выдавать 2,2 A 30 = 66 A или 2,2 А 40 = 88 А в течение 5–10 секунд, что явно будет достаточно для питания аппарата. Также эти коэффициенты напрямую влияют на вес аккумулятора. Внимание! Если тока будет не хватать, то в лучшем случае батарея надуется и выйдет из строя, а в худшем загорится или взорвется; это же может произойти при коротком замыкании, повреждении или неправильных условиях хранения и зарядки, поэтому используй специализированные зарядные устройства, аккумуляторы храни в специальных негорючих пакетах и летай с «пищалкой», которая предупредит о разрядке. Число ячеек (S) указывает на количество LiPo-элементов в батарее, каждый элемент выдает 3,7 В, и, например, 3S-аккумулятор будет отдавать примерно 11,1 В. Стоит обращать внимание на этот параметр, так как от него зависят скорость оборотов моторов и тип используемых регуляторов.

Элементы батареи объединяют последовательно или параллельно. При последовательном включении увеличивается напряжение, при параллельном - емкость. Схему подключения элементов в батарее можно понять по ее маркировке. Например, 3S1P (или просто 3S) - это три последовательно подключенных элемента. Напряжение такой батареи будет 11,1 В. 4S2P - это восемь элементов, две группы, подключенных параллельно по четыре последовательных элемента.

Однако моторы подключаются к батарее не напрямую, а через так называемые регуляторы скорости. Регуляторы скорости (они же «регули» или ESC) управляют скоростью вращения моторов, заставляя твой коптер балансировать на месте или лететь в нужном направлении. Большинство регуляторов имеют встроенный стабилизатор тока на 5 В, от которого можно питать электронику (в частности, «мозг»), можно использовать отдельный стабилизатор тока (UBEC). Выбираются контроллеры скорости исходя из потребления мотором тока, а также возможности перепрошивки. Обычные регули довольно медлительны в плане отклика на поступающий сигнал и имеют множество лишних настроек для коптеростроительства, поэтому их перепрошивают кастомными прошивками SimonK или BLHeli. Китайцы и тут подсуетились, и часто можно встретить регуляторы скорости с уже обновленной прошивкой. Не забывай, что такие регули не следят за состоянием аккумулятора и могут разрядить его ниже 3,0 В на банку, что приведет к его порче. Но в то же время на обычных ESC стоит переключить тип используемого аккумулятора с LiPo на NiMH или отключить уменьшение оборотов при разрядке источника питания (согласно инструкции), чтобы под конец полета внезапно не отключился мотор и твой беспилотник не упал.

Моторы подключаются к регулятору скорости тремя проводами, последовательность не имеет значения, но если поменять любые два из трех проводов местами, то мотор будет вращаться в обратном направлении, что очень важно для коптеров.

Два силовых провода, идущих от регулятора, надо подключить к батарейке. НЕ ПЕРЕПУТАЙ ПОЛЯРНОСТЬ! Вообще, для удобства регуляторы подключают не к самой батарейке, а к так называемому Power Distribution Module - модулю распределения энергии. Это, в общем-то, просто плата, на которой припаяны силовые провода регуляторов, распаяны разветвления для них и припаян силовой кабель, идущий к батарее. Конечно, батарею не надо припаивать, а надо соединить через разъем. Ты же не хочешь перепаивать батарею каждый раз, как она сядет.

Бортовой компьютер и сенсоры

Выбор полетных контроллеров для коптеров очень велик - начиная от простого и дешевого KapteinKUK и нескольких open source проектов под Arduino-совместимые контроллеры до дорогого коммерческого DJI Wookong. Если ты настоящий хакер, то закрытые контроллеры тебя не должны сильно интересовать, в то время как открытые проекты, да еще и основанные на популярной ардуинке, привлекут многих программистов. О возможностях любого полетного контроллера можно судить по используемым в нем датчикам:

Гироскоп позволяет удерживать коптер под определенным углом и стоит во всех контроллерах; акселерометр помогает определить положение коптера относительно земли и выравнивает его параллельно горизонту (комфортный полет); барометр дает возможность удерживать аппарат на определенной высоте. На показания этого датчика очень сильно влияют потоки воздуха от пропеллеров, поэтому стоит прятать его под кусок поролона или губки; компас и GPS вместе добавляют такие функции, как удержание курса, удержание позиции, возврат на точку старта и выполнение маршрутных заданий (автономный полет). К установке компаса стоит подойти внимательно, так как на его показания сильно влияют расположенные рядом металлические объекты или силовые провода, из-за чего «мозги» не смогут определить верное направление движения; сонар или УЗ-дальномер используется для более точного удержания высоты и автономной посадки; оптический сенсор от мышки используется для удержания позиции на малых высотах; датчики тока определяют оставшийся заряд аккумулятора и могут активировать функции возврата на точку старта или приземление.

Сейчас существует три основных открытых проекта: MultiWii, ArduCopter и его портированная версия MegaPirateNG. MultiWii самый простой из них, для запуска требует Arduino с процессором 328p, 32u4 или 1280/2560 и хотя бы одним датчиком-гироскопом. ArduCopter - проект, напичканный всевозможным функционалом от простого висения до выполнения сложных маршрутных заданий, но требует особого железа, основанного на двух чипах ATmega. MegaPirateNG - это клон ArduCopter, который способен запускаться на обычной ардуине с чипом 2560 и минимальным набором датчиков из гироскопа, акселерометра, барометра и компаса. Поддерживает все те же возможности, что и оригинал, но всегда догоняет в развитии.

Продвинутый девяти-
канальный пульт

С железом для открытых проектов аналогичная ситуация, как и с рамами для коптера, то есть ты можешь купить готовый контроллер или собрать его самостоятельно с нуля или на основе Arduino. Перед покупкой стоит всегда обращать внимание на используемые в плате датчики, так как развитие технологий не стоит на месте, а старье китайцам как-то надо распродать, к тому же не все сенсоры могут поддерживаться открытыми прошивками.

Наконец, стоит упомянуть еще один компьютер - PX4, отличающийся от клонов Arduino тем, что у него есть UNIX-подобная операционная система реального времени, с шеллом, процессами и всеми делами. Но надо предупредить, что PX4 - платформа новая и довольно сырая. Сразу после сборки не полетит.

Настройка полетных параметров, как и программы настройки, очень индивидуальна для каждого проекта, а теория по ней могла бы занять еще одну статью, поэтому вкратце: почти все прошивки для мультикоптеров основаны на PID-регуляторе, и основной параметр, требующий вмешательства, - пропорциональная составляющая, обозначаемая как P или rateP. Если при взлете твой коптер дергается из стороны в сторону, то это значение надо уменьшать, если же вяло реагирует на внешние воздействия, то наоборот - повышать, остальные нюансы ты сможешь найти в инструкциях и на сайтах разработчиков.

Безопасность

Все новички, думая о безопасности, вспоминают AR.Drone и его защиту винтов. Это хороший вариант, и он работает, но только на мелких и легких аппаратах, а когда вес твоего коптера начинает приближаться к двум килограммам или давно перевалил за эту цифру, то спасти может только прочная железная конструкция, которая будет весить очень много и, как ты понимаешь, сильно уменьшит грузоподъемность и автономность полета. Поэтому лучше сперва тренироваться подальше от людей и имущества, которое можно повредить, а уже по мере улучшения навыков защита станет и не нужна. Но даже если ты пилот со стажем, то не забывай о технике безопасности и продумывай возможные негативные последствия твоего полета при нештатных ситуациях, особенно при полетах в людных местах. Не стоит забывать, что сбой контроллера или канала связи может привести к тому, что аппарат улетит от тебя далеко, и тогда для поиска может пригодиться GPS-трекер, установленный заранее на коптер, или же простая, но очень громкая пищалка, по звуку которой ты сможешь определить его местоположение. Настрой и заранее проверь функцию fail safe твоего полетного контроллера, которая поможет приземлиться или вернуть коптер на точку старта при потере сигнала с пульта.

Управление

Немного про радиоаппаратуру. Сейчас практически все передатчики для летающих моделей работают на частоте 2,4 ГГц. Они достаточно дальнобойные, и этот частотный диапазон не так зашумлен, как, например, 900 МГц. Для полета вообще-то достаточно четырех каналов: газ, рыскание, тангаж, крен. Ну а восьми каналов точно хватит и на что-нибудь еще.

info

Для полетов с камерой обзаведись подвесом, который будет удерживать камеру параллельно горизонту при маневрах, а также поможет управлять наклоном камеры. Большинство контроллеров имеют выходы для стабилизации подвесов с сервоприводом, а также выход для переключателя управления кнопкой спуска камеры.

Комплект обычно состоит из самого пульта и приемника. На приемнике находятся ручки управления и дополнительные кнопки. Обычно выбирают аппаратуру Mode2, когда левый стик управляет газом и поворотом, а правый - наклонами коптера. Все ручки, кроме газа, подпружинены и возвращаются в начальное положение при отпускании. Также стоит обращать внимание на количество каналов. Для беспилотника потребуется четыре канала управления и один канал для переключения режимов полета, кроме того, могут потребоваться дополнительные каналы для управления камерой, для настройки или для особых режимов полетного контроллера. При выборе пульта стоит также учитывать возможность смены радиомодуля, чтобы в будущем его можно было легко обновить.

При создании коптера одним из важнейших параметров является время автономного полёта. Если вы хотите, что бы ваш коптер летал как можно дольше, моторы и их несущие винты должны работать в оптимальном режиме с максимальным КПД. Для решения данной задачи нами был спроектирован специальный измерительный стенд, речь о котором и пойдет в данной статье.


Мы занимаемся созданием бесколлекторных моторов и недавно у нас был заказ на мотор для квадрокоптера с тягой не менее 2 Кг на каждый винт. До этого мы не делали моторы под воздушный винт и нам был необходим метод измерения и стенд для мотора с винтом.

Прежде чем начать выбирать оптимальный мотор и винт под него, сперва нужно разобраться какие потери возникают в моторах.

Основными источниками потерь в бесколлекторных моторах являются железо статора и его обмотка.

Потери на железе возникают из-за его перемагничивания. Данные потери условно можно считать пропорциональными оборотам мотора и они задают минимальную потребляемую энергию мотора. Так, например, если вы возьмете большой и мощный мотор для маленького коптера с маленьким винтом, то ничего хорошего у вас не получится. Мотор просто будет вращаться вхолостую с нулевым КПД и греть железо в статоре.

Потери в медной проволоке наоборот не зависят от оборотов, а зависят от тока/потребляемой мощности. Данные потери ограничивают максимальную мощность, которую способен выдать мотор не перегревшись.

Вторым важным элементом при выборе мотора является винт. Малые винты обладают более низкими показателями эффективности г/Вт(1 грамм подъёмной силы/1 Ватт потребляемой мощности), но маленькие винты более динамичны и позволяют быстро набрать скорость на гоночных коптерах. Для достижения максимального времени полёта винт должен соответствовать максимально эффективному режиму работы мотора.

Однако если мы захотим подобрать оптимальные комплектующие для своего коптера, то мы столкнемся с большой проблемой при их выборе. Производители дают минимальный набор характеристик для своего товара. По винтам вообще невозможно найти какой либо информации кроме их размера.

Функционал стенда

На данный момент несколько производителей уже представили на рынок свои стенды. Однако их возможности не сильно превосходит функционал кухонных весов. И данные стенды не способны дать всех характеристик при работе мотора.

Нам же от стенда были необходимы следующие параметры: потребляемая мощность, обороты мотора, тяга винта, момент создаваемый винтом, КПД мотора, эффективность мотора, винта.

Исходя из этих параметров мы спроектировали конструкцию стенда и снабдили его всеми необходимыми датчиками.

Для измерения силы тяги и момента были выбраны хорошо распространённые сейчас датчики с тензосопротивлением. Они обладают хорошей жесткостью и высокой точностью измерения и очень удачно подходят по своей конструкции.

Для измерения остальных параметров были выбраны стандартные для этого датчики: полупроводниковое термосопротивление для температуры, акселерометр для замера вибраций, датчик тока на эффекте холла для измерения тока и делитель для напряжения…

Сердцем нашего стенда является микроконтроллер ATMega328 на плате Arduino Nano. Он собирает показания с датчиков, обрабатывает их и выводит на экран. Данный микроконтроллер оптимально подходит для данной задачи. Он обладает минимальной ценой, не привередлив к питанию, стабилен и имеет достаточное количество интерфейсов для данной задачи.

В результате нашей работы был получен стенд со следующими параметрами:

  • Питание через BEC модулю контроллера 5-9В, либо через micro USB
  • Измерение тяги до 5Кг с точностью +-5г
  • Измерение момента до 3Кг/см с точностью +-5г/см
  • Измерение напряжения до 30В с точность +-0.2В
  • Измерение тока до 30А с точностью +-0.1А
  • Измерение КПД с точностью +-2.5%
  • Возможность измерения оборотов винта в диапазоне 1000-15000RPM
  • Возможность измерения относительных вибраций.(Можно использовать этот параметр для балансировки мотора с винтом путём уменьшения параметра вибраций)
  • Измерение температуры мотора (*на данный момент не полностью реализовано в стенде, нами использовался отдельно подключенный датчик)
  • Возможность управления педалью “газа” прямо с пульта
Тестирование

Мы испытали наш стенд на распространенном китайском моторе 2212 и на нашем моторе.

Пример испытания на видео




Китайский мотор во всём диапазоне не смог выдать КПД выше 50%, а его эффективность составила около 4-5г/Ватт. Наш же смог показать КПД выше 70%, при этом он работал на минимуме своей мощности(тест был в пике до 500Вт, теоретический максимум 1500Вт), т.к. размер тестируемого винта маловат для него и с большем винтом КПД только возрастёт. Эффективность же у нас получилась 9г/Ватт. Так что даже с учетом гораздо большего веса мотора, даже небольшой коптер с нашим мотором смог бы летать дольше.)

Экономный вариант

Стенд описанный в данной статье является достаточно сложным и предназначен для точной проработки силовых агрегатов дрона. Для случая, когда охото сэкономить и узнать просто тягу мотора, нами был сделан простой, дешевый адаптер способный выполнить данную функцию.

Данный адаптер крепится одним концом к мотору, вторым к бутылке с водой. Бутылка устанавливается на весы. Далее мотор запускается и тяга измеряется по показаниям весов.

Крепление на адаптере сделано универсальным и подходит практически под все распространенные моторы. На втором конце адаптера находится резьба для накручивания на 5ти литровую бутылку.

Онлайн калькулятор пропеллеров eCalc известный по таким запросам как: propeller calculator, rc calculator, rc калькулятор - эффективное средство для расчета подбора двигателя с пропеллером для авиа модели. Этот калькулятор позволит Вам не только сохранить жизнь своему двигателю, но и увеличить срок эксплуатации, так же экономить ресурс батареи благодаря возможности выбрать оптимальные параметры для крейсерского режима (оптимальный режим).

Калькулятор только онлайн и расположен по этому адресу ECALC.CH . На главной странице (на английском) предлагается выбор (калькулятора) по типу модели и выбор языка:

  • propCalc - калькулятор для пропеллеров самолета
  • xcopterCalc - калькулятор для коптеров
  • fanCalc - калькулятор импеллерных систем
  • heliCalc - калькулятор для вертолетов

С годами ECALC урезал функционал для бесплатных пользователей, поэтому ниже скрины как обойти ограничения ECALC.CH плюс в довесок еще одна ссылка: http://rc-calc.com/ru/copter

Для тех кто понимает в html без слов понятно, описание для тех кто в первый раз. Видим, что AX-4008Q неактивен.

Нажимаем в браузере F12 (например в хроме или firefox) попадаем в "инспектора". Нажимаем на стрелку (на скрине отмечена цифрой 1), затем нажимаем на окно выбора (чего либо, пример с двигателем) по номером два на скрине и видим, что выделилась строка (под цифрой 3).

Нажимаем на эту строку, слева значек - развернуть. Видим в списке нужный двигатель видим, что стоит признак disable. Переделываем аналогично другим строкам, которые работают.

Пример исправленной строки.

С годами ECALC урезал функционал для бесплатных пользователей, поэтому в довесок еще одна ссылка: http://rc-calc.com/ru/copter

Похожие публикации