Сетевые команды MS Windows. Утилита ARP. Протоколы ARP, RARP, ICMP: принцип работы, назначение

Если компьютер контактирует с другим аналогичным устройством в той же сети, требуется физический или MAC-адрес. Но поскольку приложение предоставило IP-адрес получателя, ему нужен какой-то механизм для его привязки с MAC-адресом. Это делается по протоколу разрешения адресов (ARP). IP-адрес узла назначения является широковещательным, а узел-получатель сообщает источник его MAC-адреса.

Это значит, что в каждом случае, когда машина A намерена передать пакеты данных устройству B, она вынуждена отправить ARP-пакет для разрешения MAC-адреса B. Следовательно, это слишком сильно увеличивает нагрузку на трафик, поэтому для снижения стоимости связи, компьютеры, которые используют протоколы ARP, сохраняют кеш недавно приобретенных привязок адресов IP_to_MAC, т. е. они не должны повторно использовать этот протокол.

Современный вид

Сегодня используются несколько усовершенствований протокола ARP и его назначения. Так, когда машина A хочет отправить пакеты устройству B, возможно, что B отправит данные для A в скором времени. По этой причине, чтобы избежать ARP для машины B, A должна выполнить привязку адреса IP_to_MAC при запросе MAC-адреса B в специальном пакете.

Поскольку A направляет свой изначальный запрос для MAC-адреса B, каждый компьютер в сети должен извлекать и хранить в своем кеше привязку адреса IP_to_MAC A. Когда в сети появляется новый компьютер (например, при перезагрузке операционной системы), он может транслировать эту привязку, чтобы все остальные машины могли хранить его в своих кешах. Это позволит устранить множество ARP-пакетов всеми другими машинами, когда они хотят общаться с добавленным устройством.

Вариации ARP-протокола

Рассмотрим сценарий, при котором компьютер делает попытку связаться с какой-либо удаленной машиной с помощью программы PING при том, что ранее не было обмена IP-дейтаграммами между этими устройствами, и ARP-пакет должен быть отправлен для идентификации MAC-адреса удаленного компьютера.

Сообщение запроса Address Resolution Protocol (которое выглядит как обращение A.A.A.A к B.B.B.B - IP-адресам) транслируется в локальной сети с использованием протокола Ethernet типа 0x806. Пакет отбрасывается всеми машинами, за исключением целевой, которая отвечает сообщением ответа APR (AAAA - hh: hh: hh: hh: hh: hh где hh: hh: hh: hh: hh: hh - адрес источника Ethernet). Этот ответ является одноадресным для машины с IP-адресом B.B.B.B. Поскольку сообщение запроса протокола APR включало аппаратный адрес (а именно - источника Ethernet) запрашивающего компьютера, целевому устройству не требуется другое сообщение, чтобы понять это.

Взаимосвязь с другими протоколами

Как только вы поймете, для чего нужен протокол ARP, следует рассмотреть его взаимодействие с другими элементами сети.

RARP - это протокол, с помощью которого физическая машина в локальной сети может делать запрос, чтобы узнать свой IP-адрес из таблицы протокола или кэширования сервера шлюза. Это необходимо, так как на устройстве не может присутствовать постоянно установленный диск, где оно может постоянно хранить свой IP-адрес. Сетевой администратор создает таблицу в маршрутизаторе шлюза локальной сети, который сопоставляет адреса физического компьютера (либо управления доступом к среде - MAC) соответствующим «айпи». Когда новая машина настроена, ее клиентская программа RARP запрашивает с сервера RARP на маршрутизаторе для отправки его IP-адрес. Предполагая, что запись была настроена в таблице маршрутизатора, данный сервер RARP вернет «айпи» на компьютер, который может сохранить его для будущего использования. Таким образом, это тоже своеобразный протокол определения адреса.

Механизм в деталях

И машина, выдающая запрос, и сервер, на него отвечающий, использует физические сетевые адреса в процессе их короткой связи. Обычно запрашивающий компьютер не знает его. Таким образом, запрос передается всем машинам в сети. Теперь запросчик должен идентифицировать себя уникально для сервера. Для этого можно использовать либо серийный номер процессора, либо физический сетевой адрес устройства. При этом использование второго в качестве уникального идентификатора обладает двумя преимуществами:

  • Данные адреса всегда доступны и не обязательно связаны с кодом начальной загрузки.
  • Поскольку идентификационная информация зависит от сети, а не от ЦП, все машины в данной сети будут предоставлять уникальные идентификаторы.

Как и сообщение протокола ARP, запрос RARP отправляется с одного компьютера на другой, инкапсулированный в части данных сетевого кадра. Рамка Ethernet, содержащая его, имеет обычную преамбулу, Ethernet-источник и адреса назначения, а также поля типа пакета перед кадром. Кадр кодирует значение 8035, чтобы идентифицировать его содержимое как сообщение RARP. Часть данных кадра включает в себя 28-октетное сообщение.

Отправитель отправляет запрос RARP, который указывает себя как инициатор запроса и целевую машину, и передает свой физический сетевой адрес в поле целевого аппаратного адреса. Все устройства в сети получают запрос, но только те из них, кто уполномочен предоставлять RARP, обрабатывают запрос и отправляют ответ. Такие машины известны неофициально как серверы данного протокола. Для успешной реализации протоколов ARP/RARP сеть должна содержать как минимум один такой сервер.

Они отвечают на запрос, заполняя поле адреса целевого протокола, изменяя тип сообщения от запроса до ответа и отправляя ответ прямо на машину, отправляющую запрос.

Синхронизация транзакций RARP

Поскольку RARP напрямую использует физическую сеть, никакое иное программное обеспечение протокола не должно откликаться на запрос или повторно передавать его. ПО RARP должно выполнять эти задачи. Некоторые рабочие станции, полагающиеся на такой протокол для загрузки, предпочитают повторять попытку до бесконечности, пока не получат ответ. Иные реализации объявляют об отказе после нескольких попыток предотвратить наполнение сети ненужной трансляцией.

Преимущества Mulitple RARP Servers: большая надежность.

Недостаток: перегрузка может возникнуть, когда все серверы ответят.

Таким образом, чтобы избежать недостатков, можно использовать первичный и вторичный серверы. Каждому компьютеру, который запрашивает запрос RARP, назначается первичный сервер. Обычно он отвечает на все позывы, но если он терпит неудачу, тогда запросчик может взять тайм-аут и выполнить ретрансляцию запроса. Если второй сервер получает вторую копию запроса в течение короткого времени первого, он отвечает. Но все же может возникнуть проблема, при которой по умолчанию реагируют все вторичные серверы, тем самым перегружая сеть. Таким образом, проблема состоит в том, чтобы избежать одновременной передачи ответов с обоих серверов. Каждый вторичный сервер, который принимает запрос, вычисляет случайную задержку и затем отправляет ответ.

Недостатки RARP

Поскольку он работает на низком уровне, он требует прямых адресов в сети, что затрудняет работу приложений для создания сервера. Он не полностью использует возможности такой сети, как ethernet, которая применяется для отправки минимального пакета. Поскольку ответ с сервера содержит только одну небольшую часть информации, 32-разрядный интернет-адрес RARP формально описан в RFC903.

ICMP-протокол

В этом протоколе зашифрован механизм, который шлюзы и хосты используют для обмена информацией об управлении или ошибкой. Интернет-протокол обеспечивает надежную службу передачи данных без установления соединения, датаграмма перемещается от шлюза к шлюзу, пока не достигнет того, которое может доставить его непосредственно до конечного пункта назначения.

Если шлюз не может маршрутизировать или доставлять дейтаграмму, или если он обнаруживает необычное условие, такое как перегрузка сети, что влияет на его способность перенаправлять дейтаграмму, ему необходимо дать указание исходному источнику принять меры, чтобы избежать или устранить проблему.

Связующее звено

Протокол управления интернет-протоколом позволяет шлюзам отправлять сообщения об ошибках или управлять сообщениями на другие шлюзы или хосты. ICMP предоставляет связь между программным обеспечением протокола Интернета между компьютерами. Это механизм сообщений так называемого специального назначения, добавленный разработчиками к протоколам TCP/IP. Это позволяет шлюзам в Интернете информировать об ошибках либо направлять информацию о непредвиденных обстоятельствах.

Сам протокол IP не содержит ничего, чтобы помочь подключиться к тестированию отправителя или узнать о сбоях. Отчеты об ошибках и их исправлении сообщаются посредством ICMP только в отношении исходного источника. Он должен связывать ошибки с отдельными прикладными программами и предпринимать действия для устранения проблем. Таким образом, он предоставляет возможность для шлюза сообщать об ошибке. При этом он не полностью определяет действие, которое необходимо предпринять для исправления неполадок.

ICMP ограничивается в связи с исходным источником, но не с промежуточными ICMP-сообщениями. Они отправляются через Интернет в части данных дейтаграммы IP, которая сама перемещается по сети. Именно поэтому они тесно взаимосвязаны с ARP-протоколом. ICMP-сообщения маршрутизируются точно так же, как датаграммы, содержащие информацию для пользователей, не имея при этом дополнительной надежности или приоритета.

Исключение присутствует для процедур обработки ошибок, когда IP-датаграмма, несущая сообщения ICMP, не генерируется для ошибок, которые возникают из дейтаграмм, содержащих сообщения о неполадках.

Формат сообщения ICMP

Оно насчитывает в себе три поля:

  • 8-битное целочисленное поле TYPE, идентифицирующее сообщение;
  • 8-битовое поле CODE, которое предоставляет дополнительную информацию о его типе;
  • 16-разрядное поле CHECKSUM (ICMP использует одну и ту же контрольную сумму алгоритма, которая охватывает только сообщение этого протокола).

Кроме того, сообщения ICMP, информирующие об ошибках, во всех случаях включают в себя заголовок и начальные 64 бита данных дейтаграммы, вызывающих проблему.

Запросы и ответы

Протоколы TCP/IP предоставляют средства, помогающие сетевым менеджерам или пользователям идентифицировать сетевые проблемы. Один из чаще всего используемых инструментов отладки делает вызовы эхо-запроса ICMP и сообщения эхо-ответа. Хост или шлюз отправляет сообщение к определенному пункту назначения.

Любой компьютер, который принимает эхо-запрос, создает ответ, и возвращает его исходному отправителю. Запрос включает в себя необязательную область направляемых данных. Ответ имеет в себе копию данных, отправленных в запросе. Эхо-запрос и отклик, связанный с ним, могут применяться для проверки доступности достижимой цели и отклика.

Поскольку как запрос, так и ответ направляются в IP-датаграммах, успешное его получение подтверждает, что система исправно работает. Для этого должны быть соблюдены следующие условия:

  • IP-программное обеспечение источника должно маршрутизировать датаграмму;
  • Промежуточные шлюзы пунктом назначения и источником должны работать и правильно маршрутизировать дейтаграмму;
  • Должен быть запущен конечный компьютер, и на нем должно работать как программное обеспечение ICMP, так и IP;
  • Маршруты в шлюзах по обратному пути должны быть правильными.

Как это работает?

Работа протоколов ARP и ICMP тесно связана. Всякий раз, когда ошибка предотвращает маршрутизацию или доставку шлюзу датаграммы, он отправляет сообщение о недоступности адресата обратно в исходный код, а затем удаляет датаграмму. Неисправляемые неполадки в сети обычно подразумевают сбои в передаче данных. Поскольку сообщение включает в себя короткий префикс дейтаграммы, вызывавшей проблему, источник точно знает, какой из адресов недоступен. Направление может быть недоступно, поскольку аппаратное обеспечение временно не работает, отправитель сообщил несуществующий адрес назначения или потому, что шлюз не имеет маршрута к целевой сети.

Несмотря на то, что шлюзы отправляют не доходящие сообщения по назначению, если они не могут маршрутизировать или доставлять датаграммы, не все такие ошибки могут быть обнаружены. Если дейтаграмма содержит параметр исходного маршрута с неправильными данными, она может инициировать сообщение об ошибке маршрута источника.

В TCP/IP не рассматриваются технологии канального и физического уровней, при реальной передаче данных все равно приходится отображать IP адрес на адрес канального уровня.

В сети Ethernet для идентификации источника и получателя информации используются IP и MAC адреса. Информация, пересылаемая от одного компьютера другому по сети, содержит в себе физический адрес отправителя, IP-адрес отправителя, физический адрес получателя и IP-адрес получателя. ARP-протокол обеспечивает связь между этими двумя адресами, поскольку эти два адреса никак друг с другом не связаны.

ARP - протокол разрешения адресов (Address Resolution Protocol) является протоколом третьего (сетевого) уровня модели OSI, используется для преобразования IP-адресов в MAC-адреса, играет важную функцию в множественном доступе сетей. ARP была определена RFC 826 в 1982 году.

Непосредственно связь между IP адресом и MAC адресом осуществляется с помощью так называемых ARP-таблиц, где в каждой строке указывается соответствие IP адреса MAC адресу.

Пример ARP-таблицы в ОС Windowsпредставлен на рисунке.

В ARP-таблице, помимо IP и MAC адреса, еще указывается тип связи, существует два типа записей:

  • Статические записи создаются вручную, они существуют до тех пор, пока компьютер или маршрутизатор остается включенным.
  • Динамические записи должны периодически обновляться. Если запись не обновлялась в течении определенного времени (приблизительно 2 минуты), то она исключается из таблицы. В ARP-таблице содержаться записи не обо всех узлах сети. А только те, которые активно участвуют в сетевых операциях. Такой способ хранения называется ARP-кэшем.

В IPv6 функциональность ARP обеспечивает протокол NDP (Neighbor Discovery Protocol Протокол Обнаружения Соседей).

RARP (англ. Reverse Address Resolution Protocol - Обратный протокол преобразования адресов) - протокол третьего (сетевого) уровня модели OSI, выполняет обратное отображение адресов, то есть преобразует аппаратный адрес в IP-адрес.

Существует четыре типа ARP-сообщений:

  • ARP-запрос(ARPrequest);
  • ARP-ответ(ARP reply);
  • RARP-запрос(RARP-request);
  • RARP-ответ(RARP-reply).

Структура заголовка ARP

  • Hardware type (HTYPE) Каждый канальный протокол передачи данных имеет свой номер, который хранится в этом поле. Например, Ethernet имеет номер 0x0001
  • Protocol type (PTYPE) Код сетевого протокола. Например, для IPv4 будет записано 0x0800
  • Hardware length (HLEN) Длина физического адреса в байтах. Адреса Ethernet имеют длину 6 байт.
  • Protocol length (PLEN) Длина логического адреса в байтах. IPv4 адреса имеют длину 4 байта.
  • Operation Код операции отправителя: 1 в случае запроса и 2 в случае ответа.
  • Sender hardware address (SHA) Физический адрес отправителя.
  • Sender protocol address (SPA) Логический адрес отправителя.
  • Targethardwareaddress (THA) Физический адрес получателя. Поле пусто при запросе.
  • Target protocol address (TPA) Логический адрес получателя.

Рассмотрим структуру заголовка ARP запроса (request) на примере перехваченного пакета с помощью сетевого анализатора Wireshark

Рассмотрим структуру заголовка ARP ответа (reply) на примере перехваченного пакета с помощью сетевого анализатора Wireshark

Любое устройство, подключенное к локальной сети (Ethernet, FDDI и т.д.), имеет уникальный физический сетевой адрес, заданный аппаратным образом. 6-байтовый Ethernet-адрес выбирает изготовитель сетевого интерфейсного оборудования из выделенного для него по лицензии адресного пространства. Если у машины меняется сетевой адаптер, то меняется и ее Ethernet-адрес.

4-байтовый IP-адрес задает менеджер сети с учетом положения машины в сети Интернет. Если машина перемещается в другую часть сети Интернет, то ее IP-адрес должен быть изменен. Преобразование IP-адресов в сетевые выполняется с помощью arp-таблицы. Каждая машина сети имеет отдельную ARP-таблицу для каждого своего сетевого адаптера. Не трудно видеть, что существует проблема отображения физического адреса (6 байт для Ethernet) в пространство сетевых IP-адресов (4 байта) и наоборот.

Протокол ARP (address resolution protocol, RFC-826) решает именно эту проблему - преобразует ARP- в Ethernet-адреса.

ARP-таблица для преобразования адресов

Преобразование адресов выполняется путем поиска в таблице. Эта таблица, называемая ARP-таблицей, хранится в памяти и содержит строки для каждого узла сети. В двух столбцах содержатся IP- и Ethernet-адреса. Если требуется преобразовать IP-адрес в Ethernet-адрес, то ищется запись с соответствующим IP-адресом. Ниже приведен пример упрощенной ARP-таблицы.

IP-адрес Ethernet-адрес
223.1.2.1 223.1.2.3 223.1.2.4 08:00:39:00:2F:C3 08:00:5A:21:A7:22 08:00:10:99:AC:54

Табл.1. Пример ARP-таблицы

Принято все байты 4-байтного IP-адреса записывать десятичными числами, разделенными точками. При записи 6-байтного Ethernet-адреса каждый байт указывается в 16-ричной системе и отделяется двоеточием.

ARP-таблица необходима потому, что IP-адреса и Ethernet-адреса выбираются независимо, и нет какого-либо алгоритма для преобразования одного в другой. IP-адрес выбирает менеджер сети с учетом положения машины в сети internet. Если машину перемещают в другую часть сети internet, то ее IP-адрес должен быть изменен. Ethernet-адрес выбирает производитель сетевого интерфейсного оборудования из выделенного для него по лицензии адресного пространства. Когда у машины заменяется плата сетевого адаптера, то меняется и ее Ethernet-адрес.

Протокол межсетевых управляющих сообщений ICMP (Internet Control Message Protocol) является обязательным стандартом TCP/IP, описанным в документе RFC 792, «Internet Control MessageProtocol (ICMP)». Используя ICMP, узлы и маршрутизаторы, связывающиеся по протоколу IP, могут сообщать об ошибках и обмениваться ограниченной управляющей информацией и сведениями о состоянии.



ICMP-сообщения обычно автоматически отправляются в следующих случаях.

Протокол обмена управляющими сообщениями ICMP (Internet Control Message Protocol) позволяет маршрутизатору сообщить конечному узлу об ошибках, с которыми машрутизаторстолкнулся при передаче какого-либо IP-пакета от данного конечного узла.

Управляющие сообщения ICMP не могут направляться промежуточному маршрутизатору, который участвовал в передаче пакета, с которым возникли проблемы, так как для такой посылки нет адресной информации - пакет несет в себе только адрес источника и адрес назначения, не фиксируя адреса промежуточных маршрутизаторов.

Протокол ICMP - это протокол сообщения об ошибках, а не протокол коррекции ошибок. Конечный узел может предпринять некоторые действия для того, чтобы ошибка больше не возникала, но эти действия протоколом ICMP не регламентируются.

Каждое сообщение протокола ICMP передается по сети внутри пакета IP. Пакеты IP с сообщениями ICMP маршрутизируются точно так же, как и любые другие пакеты, без приоритетов, поэтому они также могут теряться. Кроме того, в загруженной сети они могут вызывать дополнительную загрузку маршрутизаторов. Для того, чтобы не вызывать лавины сообщения об ошибках, потери пакетов IP, переносящие сообщения ICMP об ошибках, не могут порождать новые сообщения ICMP.

Формат ICMP-пакета

ICMP-сообщения инкапсулируются и передаются в IP-датаграммах, как показано на следующем рисунке.

Существует несколько типов сообщений ICMP. Каждый тип сообщения имеет свой формат, при этом все они начинаются с общих трех полей: 8-битного целого числа, обозначающего тип сообщения (TYPE), 8-битного поля кода (CODE), который конкретизирует назначение сообщения, и 16-битного поля контрольной суммы (CHECKSUM). Кроме того, сообщение ICMP всегда содержит заголовок и первые 64 бита данных пакета IP, который вызвал ошибку. Это делается для того, чтобы узел-отправитель смог более точно проанализировать причину ошибки, так как все протоколы прикладного уровня стека TCP/IP содержат наиболее важную информацию для анализа в первых 64 битах своих сообщений.



Прежде всего, TCP и UDP - протоколы. А основное их отличие в том TCP - протокол с гарантированной доставкой пакетов, UDP - нет.

TCP - «гарантированный» транспортный механизм с предварительным установлением соединения, предоставляющий приложению надёжный поток данных, дающий уверенность в безошибочности получаемых данных, перезапрашивающий данные в случае потери и устраняющий дублирование данных. TCP позволяет регулировать нагрузку на сеть, а также уменьшать время ожидания данных при передаче на большие расстояния. Более того, TCP гарантирует, что полученные данные были отправлены точно в такой же последовательности. В этом его главное отличие от UDP.

UDP протокол передачи датаграмм без установления соединения. Также его называют протоколом «ненадёжной» передачи, в смысле невозможности удостовериться в доставке сообщения адресату, а также возможного перемешивания пакетов. В приложениях, требующих гарантированной передачи данных, используется протокол TCP.
UDP обычно используется в таких приложениях, как потоковое видео и компьютерные игры, где допускается потеря пакетов, а повторный запрос затруднён или не оправдан, либо в приложениях вида запрос-ответ (например, запросы к DNS), где создание соединения занимает больше ресурсов, чем повторная отправка.
И TCP, и UDP используют для определения протокола верхнего уровня число, называемое портом.

Rip ospf

В первое время RIP распространялся вместе с операционной системой BSD и не рассматривался в качестве стандарта для Интернет. Однако впоследствии, подобно множеству других служб BSD, он стал критически важным элементом IP-сетей. В настоящее время в документах IETF закреплено две версии RIP: версия 1 (исходная) - в RFC 1058 и версия 2 - в RFC 1722 (Internet Standard 56). Обе они похожи, но между ними имеются некоторые важные различия.

Протокол RIP основан на алгоритме “длины векторов” (distance-vector), который связывает длину маршрута (число переходов - hops) с его вектором (сетью или хостом назначения). Информацию о маршрутах к тем или иным сетям/хостам устройства RIP получают от соседних маршрутизаторов и затем выбирают маршрут с наименьшим числом переходов. Как только маршрут к месту назначения выбран, он сохраняется в локальной базе данных, а информация обо всех остальных маршрутах к тому же месту назначения стирается. Периодически каждый маршрутизатор сообщает остальным об обнаруженных им маршрутах.

Количество переходов в RIP равно числу маршрутизаторов между отправителем и сетью/хостом назначения. Если маршрутизатор подключен к требуемой сети напрямую, то расстояние до нее - ноль переходов. Если для доступа к нужной сети требуется лишь переслать дейтаграммы через соседний маршрутизатор, то расстояние до нее равно одному переходу. Когда маршрутизатор рассылает информацию о найденном маршруте, он увеличивает число переходов на единицу. Как только эти данные поступают на соседние маршрутизаторы, они сравниваются с информацией их собственных баз данных. Если какой-нибудь из предложенных маршрутов оказывается короче, нежели хранящийся в базе данных, он заносится в локальную таблицу маршрутизации, а маршрутизатор, с которого пришло сообщение, становится первым узлом для пересылки трафика по этому маршруту.

Протокол OSPF появился как ориентированный на IP-сети вариант протокола IS-IS. Он определен в нескольких документах IETF: в RFC 1131 описан OSPF 1 (устаревшая версия), в RFC 1583, - вероятно, самая распространенная версия OSPF 2, и, наконец, в RFC 2328 определен последний вариант OSPF 2 (Internet Standard 54).

При использовании OSPF на каждом маршрутизаторе содержится независимая база данных по административной области маршрутизации, включающая информацию о доступных сетях, маршрутизаторах и стоимости каждого соединения. Когда состояние сети, маршрутизатора или интерфейса изменяется, каждый обнаруживший это маршрутизатор (в пределах области) вносит информацию в локальную базу данных, а затем соответственно перестраивает карты маршрутизации. Выбор маршрута производится с учетом стоимости всех маршрутов к конкретной точке назначения и напрямую не зависит от числа переходов. Другими словами, для выбора оптимальных маршрутов в OSPF применяется алгоритм “стоимости векторов” (cost vector).

Эта модель предоставляет больше возможностей для улучшения маршрутизации (например, быстрее происходит синхронизация изменений), но требует большей вычислительной мощности и большего объема памяти от участвующих в процессе машин. По этой причине на рынке гораздо шире представлены системы с поддержкой RIP, нежели OSPF. Например, хотя во многих серверных ОС имеются те или иные OSPF-демоны, лишь очень небольшое число сетевых клиентов или устройств низшего класса поддерживают OSPF, поскольку даже для пассивного “прослушивания” приходится снабжать устройство полнофункциональным механизмом анализа базы данных OSPF.

В основе архитектуры OSPF лежит концепция административных областей. Маршрутизаторы, работающие в одной области, обмениваются подробной информацией о ней, но маршрутизаторам из удаленных областей передаются только общие сведения. Если имеется несколько областей, то для обмена информацией между ними организуется магистральная (стержневая) область. Через нее пограничные устройства будут обмениваться общей информацией, что означает наличие в OSPF двухуровневой иерархии обмена маршрутной информацией между областями (это относится не ко всему сетевому трафику, а только к сообщениям протоколов маршрутизации).

Областям присваиваются 32-битовые идентификаторы (обычно они представлены в виде адресов IPv4), магистраль же всегда имеет номер 0. Маршрутизаторы могут одновременно присутствовать в нескольких областях, но для каждой из них они должны хранить отдельную базу данных о состоянии соединений. Согласно терминологии OSPF, маршрутизатор, присутствующий одновременно в нескольких областях, называется ABR (Area Border Router), а маршрутизатор, обменивающийся данными с другим протоколом маршрутизации, - ASBR (Autonomous System Border Router).

Протокол ARP предназначен для определения адресов канального уровня (MAC-адресов) по известным IP-адресам. Это очень важный протокол, его работа напрямую влияет на работоспособность сети в целом.

Назначение протокола ARP

Для взаимодействия устройств друг с другом необходимо, чтобы у передающего устройства был IP- и MAC-адреса получателя. Когда одно из устройств пытается установить связь с другим, с известным , ему необходимо определить MAC-адрес получателя. имеет в своем составе специальный протокол, называемый ARP (Address Resolution Protocol - протокол преобразования адресов), который позволяет автоматически получить MAC-адрес. На рис. ниже проиллюстрирован процесс, позволяющий определить MAC-адрес, связанный с известным IP-адресом.

Некоторые устройства хранят специальные ARP-таблицы, в которых содержится информация о MAC- и IP-адресах других устройств, подключенных к той же локальной сети. ARP-таблицы позволяют установить однозначное соответствие между IP- и MAC-адресами. Такие таблицы хранятся в определенных областях оперативной памяти и обслуживаются автоматически на каждом из сетевых устройств (см. таблицы ниже). В редких случаях приходится создавать ARP-таблицы вручную. Обратите внимание, что каждый компьютер в сети поддерживает свою собственную ARP-таблицу.

Куда бы не передавались сетевым устройством данные, для их пересылки всегда используется информация, хранящаяся в ARPтаблице (рис. ниже: одно из устройств хочет передать данные другому устройству).

Функционирование протокола ARP в подсетях

Для передачи данных от одного узла другому отправитель должен знать IP- и MAC-адрес получателя. Если он не может получить искомый физический адрес из собственной ARP-таблицы, инициируется процесс, называемый ARPзапросом, ко торый проиллюстрирован на рис. выше.

ARP-запрос позволяет узлу определить MAC-адрес получателя. Узел создает фрейм ARP-запроса и рассылает его всем сетевым устройствам. Фрейм ARP-запроса состоит из двух частей:

  • заголовка фрейма;
  • сообщения ARP-запроса.

Для того чтобы все устройства могли получить ARP-запрос, используется широковещательный MAC-адрес. В схеме MAC-адресации широковещательный адрес содержит во всех битах шестнадцатеричное число F и имеет, таким образом, вид FF-FF-FF-FF-FF-FF (Такая запись MAC-адреса называется канонической, в ней части адреса разделены дефисом (-); существует также альтернативная запись, в которой части адреса разделены двоеточием (:).). Поскольку пакеты ARP-запроса передаются в широковещательном режиме, все сетевые устройства, подключенные к локальной сети, могут получить такие пакеты и передать их протоколам более высоких уровней для последующей обработки. Если IP-адрес устройства совпадает с IP-адресом получателя в широковещательном ARP-запросе, это устройство отвечает отправителю, сообщая свой MAC-адрес. Такое сообщение называется ARP-ответом.

После получения ARP-ответа устройство-отправитель широковещательного ARP-запроса извлекает MAC-адрес из поля аппаратного адреса отправителя и обновляет свою ARP-таблицу. Теперь это устройство может надлежащим образом адресовать пакеты, используя как MAC-, так и IP-адрес. Полученная информация используется для инкапсуляции данных на втором и третьем уровнях перед их отправкой по сети. Когда данные достигают пункта назначения, на канальном уровне проводится проверка на соответствие адреса, отбрасывается канальный заголовок, который содержит MAC-адреса, и данные передаются на сетевой уровень. На сетевом уровне проверяется соответствие собственного IP-адреса и IP-адреса получателя, содержащегося в заголовке третьего уровня. На сетевом уровне отбрасывается IP-заголовок, и инкапсулированные данные передаются на следующий уровень - транспортный (уровень 4). Подобный процесс повторяется до тех пор, пока оставшиеся, частично распакованные, данные не достигнут приложения (уровень 7), в котором будет прочитана пользовательская часть данных.

ARP кэш

На каждом хосте содержится ARP кэш (ARP cache). Записи в эше могут быть двух видов: статические и динамические. В современных сетевых ОС (Windows, Linux, BSD) можно просмотреть эти записи в консоли с помощью команды:

Очистка ARP кэша

Иногда в Windows ARP кэш оказывается поврежденным (действие вирусов, например) и его нужно очистить. «Симптомы» этой проблемы могут быть распознаны в не возможности отображения веб-страниц (time out) и ping`а других компьютеров.

Чтобы очистить ARP кэш в Windows нужно в командной строке набрать:

C:>netsh interface ip delete arpcache Ok.

Если не удалось очистить ARP кэш и появилось сообщение об ошибке вроде этого «Невозможно завершить исправление ошибки, так как не удается выполнить следующие действия: Выполнить очистку ARP-кэша». То нужно отключить службу «Маршрутизация и удаленный доступ» и попробовать снова. Процесс удаления ARP-кэша должен быть выполниться без ошибок.

Еще одна команда для очистки ARP-кэша:

ARP-spoofing

ARP-spoofing (ARP-poisoning) - это вид сетевой атаки в Ethernet-сетях в котором используются особенности работы протокола ARP. Суть механизма данной атаки заключается в следующем: перехватив широковещательный ARP-запрос в домене широковещательных рассылок, отправителю высылается ложный ARP-ответ, в котором атакующая сторона выдает себя за получателя (например, за маршрутизатор), а затем начинает контролировать весь трафик предназначенный для настоящего объекта в сети.

Противодействовать атакам такого рода можно отслеживая работу ARP (с помощью arpwatch) или шифруя передаваемый трафик на сетевом уровне (IPSec) и другими способами.

ARP и IPv6

В IPv6 больше не используется ARP. На его замену пришел NDP (The Neighbor Discovery Protocol ). Этот протокол описан в

За публикацию первоначальной статьи, а также всем, кто плюсанул в карму для возможности моей собственноручной публикации. Теперь дополненная версия с учетом пожеланий и дополнений. Добро пожаловать под кат.

Доброго времени суток, дорогие хабраюзеры. Этой статьей я хочу начать цикл повествования о протоколах, которые помогают нам прозрачно, быстро и надежно обмениваться информацией. И начать с протокола ARP.

Как известно, адресация в сети Internet представляет собой 32-битовую последовательность 0 и 1, называющихся IP-адресами. Но непосредственно связь между двумя устройствами в сети осуществляется по адресам канального уровня (MAC-адресам).

Так вот, для определения соответствия между логическим адресом сетевого уровня (IP) и физическим адресом устройства (MAC) используется описанный в RFC 826 протокол ARP (Address Resolution Protocol, протокол разрешения адресов).

ARP состоит из двух частей. Первая – определяет физический адрес при посылке пакета, вторая – отвечает на запросы других станций.

Протокол имеет буферную память (ARP-таблицу), в которой хранятся пары адресов (IP-адрес, MAC-адрес) с целью уменьшения количества посылаемых запросов, следовательно, экономии трафика и ресурсов.

Пример ARP-таблицы.

192.168.1.1 08:10:29:00:2F:C3
192.168.1.2 08:30:39:00:2F:C4

Слева – IP-адреса, справа – MAC-адреса.

Прежде, чем подключиться к одному из устройств, IP-протокол проверяет, есть ли в его ARP-таблице запись о соответствующем устройстве. Если такая запись имеется, то происходит непосредственно подключение и передача пакетов. Если же нет, то посылается широковещательный ARP-запрос, который выясняет, какому из устройств принадлежит IP-адрес. Идентифицировав себя, устройство посылает в ответ свой MAC-адрес, а в ARP-таблицу отправителя заносится соответствующая запись.

Записи ARP-таблицы бывают двух вид видов: статические и динамические. Статические добавляются самим пользователем, динамические же – создаются и удаляются автоматически. При этом в ARP-таблице всегда хранится широковещательный физический адрес FF:FF:FF:FF:FF:FF (в Linux и Windows).

Создать запись в ARP-таблице просто (через командную строку):

arp –s

Вывести записи ARP-таблицы:

arp –a

После добавления записи в таблицу ей присваивается таймер. При этом, если запись не используется первые 2 минуты, то удаляется, а если используется, то время ее жизни продлевается еще на 2 минуты, при этом максимально – 10 минут для Windows и Linux (FreeBSD – 20 минут, Cisco IOS – 4 часа), после чего производится новый широковещательный ARP-запрос.

Сообщения ARP не имеют фиксированного формата заголовка и при передаче по сети инкапсулируются в поле данных канального уровня

Формат сообщения ARP.

  • тип сети (16 бит): для Ethernet – 1 ;
  • тип протокола (16 бит): h0800 для IP ;
  • длина аппаратного адреса (8 бит);
  • длина сетевого адреса (8 бит);
  • тип операции (16 бит): 1 – запрос, 2 - ответ ;
  • аппаратный адрес отправителя (переменная длина);
  • сетевой адрес отправителя (переменная длина);
  • аппаратный адрес получателя (переменная длина);
  • сетевой адрес получателя (переменная длина).

А вот как происходит определение маршрута с участием протокола ARP.

Пусть отправитель A и получатель B имеют свои адреса с указанием маски подсети.

  1. Если адреса находятся в одной подсети, то вызывается протокол ARP и определяется физический адрес получателя, после чего IP-пакет инкапсулируется в кадр канального уровня и отправляется по указанному физическому адресу, соответствующему IP-адресу назначения.
  2. Если нет – начинается просмотр таблицы в поисках прямого маршрута.
  3. Если маршрут найден, то вызывается протокол ARP и определяется физический адрес соответствующего маршрутизатора, после чего пакет инкапсулируется в кадр канального уровня и отправляется по указанному физическому адресу.
  4. В противном случае, вызывается протокол ARP и определяется физический адрес маршрутизатора по умолчанию, после чего пакет инкапсулируется в кадр канального уровня и отправляется по указанному физическому адресу.

Главным достоинством проткола ARP является его простота, что порождает в себе и главный его недостаток – абсолютную незащищенность, так как протокол не проверяет подлинность пакетов, и, в результате, можно осуществить подмену записей в ARP-таблице (материал для отдельной статьи), вклинившись между отправителем и получателем.

Бороться с этим недостатком можно, вручную вбивая записи в ARP-таблицу, что добавляет много рутинной работы как при формировании таблицы, так и последующем ее сопровождении в ходе модификации сети.

Существуют еще протоколы InARP (Inverse ARP), который выполняет обратную функцую: по заданному физическому адресу ищется логический получателя, и RARP (Reverse ARP), который схож с InARP, только он ищет логический адрес отправителя.

В целом, протокол ARP универсален для любых сетей, но используется только в IP и широковещательных (Ethernet, WiFi, WiMax и т.д.) сетях, как наиболее широко распространенных, что делает его незаменимым при поиске соответствий между логическими и физическими адресами.

P.S. Эту статью писал я сам, никуда не подглядывая, основываясь только на своих знаниях, полученных в ходе изучения сетей.

Похожие публикации