Табличный симплекс метод онлайн. Решить задачу линейного программирования симплекс методом

11.4. ДВОЙСТВЕННЫЙ СИМПЛЕКС-МЕТОД

Из результатов предыдущих пунктов следует, что для получения решения исходной задачи можно перейти к двойственной и, используя оценки ее оптимального плана, определить оптимальное решение исходной задачи.

Переход к двойственной задаче не обязателен, так как если рассмотреть первую симплексную таблицу с единичным дополнительным базисом, то легко заметить, что в столбцах записана исходная задача, а в строках –двойственная.

Как было показано, при решении прямой задачи на любой итерации разность , т.е. величина -коэффициента при переменной , равна разности между правой и левой частями соответствующего ограничения двойственной задачи. Если при решении прямой задачи с максимизируемой целевой функцией итерация не приводит к оптимальному решению, то по крайней мере для одной переменной и только в оптимуме для всех разность .

Рассматривая это условие с учетом двойственности, можно записать

.

Таким образом, если , то . Это означает, что, когда решение прямой задачи неоптимальное, решение двойственной задачи недопустимое. С другой стороны при . Отсюда следует, что оптимальному решению прямой задачи соответствует допустимое решение двойственной задачи.

Это позволило разработать новый метод решения задач линейного программирования, при использовании которого сначала получается недопустимое, но «лучшее, чем оптимальное» решение (в обычном симплекс-методе сначала находится допустимое , но неоптимальное решение). Новый метод, получивший название двойственного симплекс-метода , обеспечивает выполнение условия оптимальности решения и систематическое «приближение» его к области допустимых решений. Когда полученное решение оказывается допустимым, итерационный процесс вычислений заканчивается, так как это решение является и оптимальным.

Двойственный симплекс-метод позволяет решать задачи линейного программирования, системы ограничений которых при положительном базисе содержат свободные члены любого знака. Этот метод позволяет уменьшить количество преобразований системы ограничений, а также размера симплексной таблицы. Рассмотрим применение двойственного симплекс-метода на примере.

Пример . Найти минимум функции

при ограничениях

.

Перейдем к канонической форме:

при ограничениях

Начальная симплекс-таблица имеет вид

Базисные

переменные

x 1

x 2

x 3

x 4

x 5

Решение

x 3

x 4

x 5

–3

–4

–1

–3

–3

–6

–2

–1

Начальное базисное решение оптимальное, но не допустимое.

Как и обычный симплексный метод, рассматриваемый метод решения основан на использовании условий допустимости и оптимальности.

Условие допустимости . В качестве исключаемой переменной выбирается наибольшая по абсолютной величине отрицательная базисная переменная (при наличии альтернатив выбор делается произвольно). Если все базисные переменные неотрицательные, процесс вычислений заканчивается, так как полученное решение допустимое и оптимальное.

Условие оптимальности . Включаемая в базис переменная выбирается из числа небазисных переменных следующим образом. Вычисляются отношения коэффициентов левой части -уравнения к соответствующим коэффициентам уравнения, ассоциированного с исключаемой переменной. Отношения с положительным или нулевым значением знаменателя не учитываются. В задаче минимизации вводимой переменной должно соответствовать наименьшее из указанных отношений, а в задаче максимизации – отношение, наименьшее по абсолютной величине (при наличии альтернатив выбор делается произвольно). Если знаменатели всех отношений равны нулю или положительные, задача не имеет допустимых решений.

После выбора включаемой в базис и исключаемой переменных для получения следующего решения осуществляется обычная операция преобразования строк симплекс-таблицы.

В рассматриваемом примере исключаемой переменной является . Отношения, вычисленные для определения новой базисной переменной, приведены в следующей таблице:

Переменные

x 1

x 2

x 3

x 4

x 5

Уравнение

x 4 -уравнение

–2

–4

–1

–3

Отношение

В качестве включаемой переменной выбирается x 2 . Последующее преобразование строк приводит к новой симплекс-таблице:

Базисные

переменные

x 1

x 2

x 3

x 4

x 5

Решение

x 3

x 2

x 5

–1

–1

Новое решение также оптимальное, но все еще недопустимое. В качестве новой исключаемой переменной выберем (произвольно) x 3 . Определим включаемую переменную.

Переменные

x 1

x 2

x 3

x 4

x 5

Уравнение

x 4 -уравнение

отношение

Для разрешения выполнения апплета на вашем компьютере надо сделать следующее - нажать кнопку Пуск>Панельуправления>Программы>Java. В окне Java Control Panel выбираем вкладку Security (Безопастность) нажимаем кнопку Edit Site List, кнопку add и вставляем в свободное поле путь к этой страницы из адресной строки браузера. Далее нажимаем кнопки ОК, после этого перезагружаем компьютер.

Для запуска апплета нажмите на кнопку "Simplex". Если над этой строкой не видна кнопка "Simplex", то на компьютере не установлена Java.

    После нажатия на кнопку « Simplex » выводится первое окно для ввода числа переменных и числа ограничений задачи на симплекс-метод.

    После нажатия на кнопку « ok » выводится окно для ввода остальных данных задачи на симплекс-метод: режима отображения (десятичные дроби или обыкновенные), тип критерия задачи min или max , ввод коэффициентов целевой функции и коэффициентов системы ограничений со знаками « ≤ », « ≥ » или « = », ограничения вида х i ≥ 0 вводить не надо, их учитывает в своем алгоритме.

    После нажатия на кнопку «Решить» выводится окно с результатами решения задачи на . Окно состоит из двух частей, в верхней части находится текстовое поле, содержащее описание приведения исходной задачи к канонической форме, которая используется для составления первой симплекс-таблицы. В нижней части окна в панели со вкладками расположены симплекс-таблицы каждой итерации с небольшим текстовым полем внизу с указанием разрешающего столбца, разрешающей строки и другой информации, что делает программу обучающей. Во вкладке с оптимальной (последней) таблицей в текстовом поле приведено полученное оптимальное решение задачи.

Замеченные ошибки и комментарии по работе апплета присылайте на [email protected] или звоните 8 962 700 77 06, за что мы будем Вам очень благодарны.

Программа М-метод

Программа для решения транспортной задачи

Здесь приведено ручное (не апплетом) решение двух задач симплекс-методом (аналогичным решению апплетом) с подробными объяснениями для того, чтобы понять алгоритм решения задач. Первая задача содержит знаки неравенства только " ≤ " (задача с начальным базисом), вторая может содержить знаки " ≥ ", " ≤ " или " = " (задача с искусственным базисом), они решаются по разному.

Симплекс-метод, решение задачи с начальным базисом

1)Симплекс-метод для задачи с начальным базисом (все знаки неравенств-ограничений " ≤ ").

Запишем задачу в канонической форме, т.е. ограничения-неравенства перепишем в виде равенств, добавляя балансовые переменные:

Эта система является системой с базисом (базис s 1 , s 2 , s 3 , каждая из них входит только в одно уравнение системы с коэффициентом 1), x 1 и x 2 - свободные переменные. Задачи, при решении которых применяется симплекс-метод, должны обладать следующими двумя свойствами:
-система ограничений должна быть системой уравнений с базисом;
-свободные члены всех уравнений в системе должны быть неотрицательны.

Полученная система - система с базисом и ее свободные члены неотрицательны, поэтому можно применить симплекс-метод. Составим первую симплекс-таблицу (Итерация 0), т.е. таблицу коэффициентов целевой функции и системы уравнений при соответствующих переменных. Здесь "БП" означает столбец базисных переменных, «Решение» - столбец правых частей уравнений системы. Решение не является оптимальным, т.к. в z – строке есть отрицательные коэффициенты.

итерация 0

БП

Решение Отношение

Для улучшения решения перейдем к следующей итерации, получим следующую симплекс-таблицу. Для этого надо выбрать разрешающий столбец , т.е. переменную, которая войдет в базис на следующей итерации. Он выбирается по наибольшему по модулю отрицательному коэффициенту в z-строке (в задаче на максимум) – в начальной итерации это столбец x 2 (коэффициент -6).

Затем выбирается разрешающая строка , т.е. переменная, которая выйдет из базиса на следующей итерации. Она выбирается по наименьшему отношению столбца "Решение" к соответствующим положительным элементам разрешающего столбца (столбец «Отношение») – в начальной итерации это строка s 3 (коэффициент 20).

Разрешающий элемент находится на пересечении разрешающего столбца и разрешающей строки, его ячейка выделена цветом, он равен 1. Следовательно, на следующей итерации переменная x 2 заменит в базисе s 3 . Заметим, что в z-строке отношение не ищется, там ставится прочерк " - ". В случае если есть одинаковые минимальные отношения, то выбирается любое из них. Если в разрешающем столбце все коэффициенты меньше или равны 0, то решение задачи бесконечно.

Заполним следующую таблицу «Итерация 1». Её мы получим из таблицы «Итерация 0». Цель дальнейших преобразований - превратить разрешающий столбец х 2 в единичный (с единицей вместо разрешающего элемента и нулями вместо остальных элементов).

1)Вычисление строки х 2 таблицы "Итерация 1". Сначала делим все члены разрешающей строки s 3 таблицы "Итерация 0" на разрешающий элемент (он равен 1 в данном случае) этой таблицы, получим строку x 2 в таблице «Итерации 1». Т.к. разрешающий элемент в данном случае равен 1, то строка s 3 таблицы "Итерация 0" будет совпадать со строкой х 2 таблицы "Итерация 1". Строку x 2 таблицы "Итерации 1" мы получили 0 1 0 0 1 20, остальные строки таблицы "Итерация 1" будут получены из этой строки и строк таблицы "Итерация 0" следующим образом:

2) Вычисление z-строки таблицы "Итерация 1". На месте -6 в первой строке (z-строке) в столбце х 2 таблицы "Итерация 0" должен быть 0 в первой строке таблицы "Итерация 1". Для этого все элементы строки х 2 таблицы "Итерация 1" 0 1 0 0 1 20 умножим на 6, получим 0 6 0 0 6 120 и сложим эту строку с первой строкой (z - строкой) таблицы "Итерация 0" -4 -6 0 0 0 0, получим -4 0 0 0 6 120. В столбце x 2 появился ноль 0 , цель достигнута. Элементы разрешающего столбца х 2 выделены красным цветом.

3) Вычисление строки s 1 таблицы "Итерация 1". На месте 1 в s 1 строке таблицы "Итерация 0" должен быть 0 в таблице "Итерация 1". Для этого все элементы строки х 2 таблицы "Итерация 1" 0 1 0 0 1 20 умножим на -1, получим 0 -1 0 0 -1 -20 и сложим эту строку с s 1 - строкой таблицы "Итерация 0" 2 1 1 0 0 64, получим строку 2 0 1 0 -1 44. В столбце х 2 получен необходимый 0.

4) Вычисление строки s 2 таблицы "Итерация 1". На месте 3 в s 2 строке таблицы "Итерация 0" должен быть 0 в таблице "Итерация 1". Для этого все элементы строки х 2 таблицы "Итерация 1" 0 1 0 0 1 20 умножим на -3, получим 0 -3 0 0 -3 -60 и сложим эту строку с s 2 - строкой таблицы "Итерация 0" 1 3 0 1 0 72, получим строку 1 0 0 1 -3 12. В столбце х 2 получен нужный 0. Столбец х 2 в таблице "Итерация 1" стал единичным, он содержит одну 1 и остальные 0.

Строки таблицы «Итерация 1» получаем по следующему правилу:

Новая строка = Старая строка – (Коэффициент разрешающего столбца старой строки)*(Новая разрешающая строка).

Например для z -строки имеем:

Старая z-строка (-4 -6 0 0 0 0)
-(-6)*Новая разрешающая строка -(0
-6 0 0 -6 -120)
=Новая z-строка
(-4 0 0 0 6 120) .

Для следующих таблиц пересчет элементов таблицы делается аналогично, поэтому мы его опускаем.

итерация 1

Решение Отношение

Разрешающий столбец х 1 , разрешающая строка s 2 , s 2 выходит из базиса, х 1 входит в базис. Совершенно аналогично получим остальные симплекс-таблицы, пока не будет получена таблица со всеми положительными коэффициентами в z-строке. Это признак оптимальной таблицы.

Итерация 2

Решение Отношение

Разрешающий столбец s 3 , разрешающая строка s 1 , s 1 выходит из базиса, s 3 входит в базис.

Итерация 3

Решение Отношение

В z-строке все коэффициенты неотрицательны, следовательно, получено оптимальное решение x 1 = 24, x 2 = 16, z max = 192.

Симплекс-метод, решение задачи с искусственным базисом

2) Решим задачу с искусственным базисом (хотя бы один знак неравенств-ограничений " ≥ " или " = ").

Запишем задачу в канонической форме (в виде системы уравнений, что требует симплекс-метод), для этого введем две переменные х 3 ≥ 0 и х 4 ≥ 0 получим:

Система ограничений предлагает только одну допустимую базисную переменную x 4 , только она входит только в одно уравнение в третье с коэффициентом 1, поэтому в первое и второе уравнения добавляем искусственные переменные R 1 ≥ 0 и R 2 ≥ 0 Чтобы можно было примененить симплекс-метод система уравнений-ограничений должна быть системой с базисом, т.е. в каждом уравнении должна быть переменная с коэффициентом 1, которая входит только в одно уравнение системы, в нашем случае это R 1 , R 2 и x 4 . Получили, так называемую, М-задачу:

Данная система является системой с базисом, в которой R 1 , R 2 и x 4 базисные переменные, а x 1 , x 2 и x 3 свободные переменные, свободние члены всех уравнений неотрицательны. Следовательно, для решения задачи можно применить симплекс-метод. Запишем начальную симплекс-таблицу:

итерация 0

Решение Отношение
-16

В таблицу для задач с искусственным базисом добавлена строка «Оценка». Она получается суммированием соответствующих коэффициентов строк с искусственными переменными (R) с обратным знаком. Она будет присутствовать в таблице до тех пор, пока хотя бы одна из искусственных переменных есть в базисе. По наибольшему по модулю отрицательному коэффициенту строки "Оценка" определяется разрешающий столбец пока она есть в таблице. Когда строка "Оценка" выйдет из таблицы (в базисе нет искусственных переменных) разрешающий столбец будет определяться по z-строке, как и в задаче с начальным базисом. В данной таблице разрешающий столбец х 2 , он выбран по наибольшей по модулю отрицательной оценке (-7). Разрешающая строка R 2 выбрана по наименьшему отношению столбца "Решение" к соответствующим положительным элементам разрешающего столбца, как и в задаче без искусственных переменных. Это значит, что на следующей итерации переменная х 2 из свободной перейдет в базисную, а переменная R 2 из базисной – в свободную. Запишем следующую симплекс-таблицу:

Разрешающий столбец х 1 , разрешающая строка R 1 , R 1 выходит из базиса, x 1 входит в базис. После этого в базисе не остается искусственных переменных, поэтому строки «Оценка» в следующей таблице нет:

итерация 2

Решение Отношение

Далее разрешающий столбец выбирается по z-строке. В z-строке все коэффициенты неотрицательны кроме коэффициента при искусственной переменной R 1 , который не влияет на оптимальность, когда искусственные переменные вышли из базиса. Следовательно, получено оптимальное решение x 1 = 6/5; x 2 = 3/5; z max = 72/5.

Особые случаи применения симплекс-метода

1) Когда прямая (если рассматривается двухмерная задача линейного программирования, а в общем случае гиперплоскость), представляющая целевую функцию параллельна прямой (гиперплоскости), соответствующей одному из неравенств-ограничений (которое в точке оптимума выполняется, как точное равенство) целевая функция принимает одно и тоже оптимальное значение на некотором множестве точек границы области допустимых решений. Эти решения называются альтернативными оптимальными решениями . Наличие альтернативных решений можно определить по оптимальной симплекс-таблице. Если в z-строке оптимальной таблицы есть нулевые коэффициенты небазисных переменных, то есть альтернативные решения.

2) Если в разрешающем столбце симплекс-таблицы все коэффициенты меньше или равны нуль, то нельзя выбрать разрешающую строку, в этом случае решение неограничено.

3) Если ограничения задачи линейного программирования несовместны (т.е. они не могут выполняться одновременно), то задача не имеет допустимых решений. Такая ситуация не может возникнуть, если все неравенства, составляющие систему ограничений, имеют тип " ≤ " с неотрицательными правыми частями, т.к. в этом случае дополнительные переменные могут составить допустимое решение. Для других типов ограничений использются искусственные переменные. Если задача имеет решение, то в оптимальной таблице в базисе нет искусственных переменных (R i). Если они там есть, то задача не имеет решений.

Симплексный метод − это метод упорядоченного перебора опорных планов (упорядоченность обеспечивается монотонным изменением значения целевой функции при переходе к очередному плану). При этом необходимо соблюдать принцип: каждый следующий шаг должен улучшить или, в крайнем случае, не ухудшить значение целевой функции.

Для решения ЗЛП симплекс-методом ее приводят к каноническому виду, т.е. из ограничений – неравенств надо сделать ограничения – равенства. Для этого в каждое ограничение вводится дополнительная неотрицательная балансовая переменная со знаком «+», если знак неравенства «£», и со знаком «–», ели знак неравенства «³».

В целевой функции эти дополнительные переменные входят с нулевыми коэффициентами, т.е. запись целевой функции не изменится. Каждую переменную, на которую не наложено условие неотрицательности, можно представить в виде разности двух неотрицательных переменных: .

Если ограничения задачи отображают наличие и расход ресурсов, то числовое значение дополнительной переменной в плане задачи, записанной в канонической форме, равно объему неиспользованного ресурса.

Для решения задачи симплекс-методом будем использовать укороченные симплексные таблицы системы линейных уравнений и метод модифицированного жорданова исключения .

1. Составляем первый опорный план

Задача остается прежней. Приведем стандартную форму системы неравенств (1) в каноническую форму системы уравнений путем введения дополнительных балансовых переменных x 3 , x 4 , x 5 , x 6 .

или

В экономическом смысле значения дополнительных переменных x 3 , x 4 , x 5 определяют остатки сырья после реализации продукции.

Матрица полученной системы уравнений имеет вид:

Видно, что в матрице A базисным минором 4-го порядка является определитель, составленный из единичных коэффициентов при дополнительных переменных x 3 , x 4 , x 5 , x 6 , так как он отличен от нуля и равен 1. Это означает, что векторы-столбцы при этих переменных является линейно независимыми, т.е. образуют базис , а соответствующие им переменные x 3 , x 4 , x 5 , x 6 являются базисными (основными). Переменные x 1 , x 2 будут называться свободными (неосновными).

Если свободным переменным x 1 и x 2 задавать различные значения, то, решая систему относительно базисных переменных, получим бесконечное множество частных решений. Если свободным переменным задавать только нулевые значения, то из бесконечного множества частных решений выделяют базисные решения – опорные планы.

Чтобы выяснить, могут ли переменные быть базисными, необходимо вычислить определитель, состоящий из коэффициентов при этих переменных. Если данный определитель не равен нулю, то эти переменные могут быть базисными.


Количество базисных решений и соответствующее ему число групп базисных переменных может быть не более, чем , где n –общее число переменных, r – число базисных переменных, r m n .

Для нашей задачи r = 4; n = 6. Тогда , т.е. возможны 15 групп из 4-х базисных переменных (или 15 базисных решений).

Разрешим систему уравнений относительно базисных переменных x 3 , x 4 , x 5 , x 6:

Полагая, что свободные переменные x 1 = 0, x 2 = 0, получим значения базисных переменных: x 3 = 312; x 4 = 15; x 5 = 24; x 6 = –10, т.е. базисное решение будет = (0; 0; 312; 15; 24; –10).

Данное базисное решение является недопустимым , т.к. x 6 = –10 ≤ 0, а по условию ограничений x 6 ≥ 0. Поэтому вместо переменной x 6 в качестве базисной надо взять другую переменную из числа свободных x 1 или x 2 .

Дальнейшее решение будем выполнять, используя укороченные симплексные таблицы, заполнив строки первой таблицы коэффициентами системы следующим образом (табл. 1):

Таблица 1

F –строка называется индексной . Она заполняется коэффициентами целевой функции, взятыми с противоположными знаками, так как уравнение функции можно представить в виде F = 0 – (– 4x 1 – 3x 2).

В столбце свободных членов b i есть отрицательный элемент b 4 = –10, т.е. решение системы является недопустимым. Чтобы получить допустимое решение (опорный план), элемент b 4 надо сделать неотрицательным.

Выбираем x 6 -строку с отрицательным свободным членом. В этой строке есть отрицательные элементы. Выбираем любой из них, например, «–1» в x 1 -столбце, и x 1 -столбец принимаем в качестве разрешающего столбца (он определит, что переменная x 1 перейдет из свободных в базисные).

Делим свободные члены b i на соответствующие элементы a is разрешающего столбца, получаем оценочные отношения Θ i = = {24, 15, 12, 10}. Из них выбираем наименьшее положительное (minΘ i =10), которое будет соответствовать разрешающей строке . Разрешающая строка определяет переменную x j , которая на следующем шаге выступает из базиса и станет свободной. Поэтому x 6 -строка является разрешающей строкой, а элемент «–1» – разрешающим элементом . Обводим его кружком. Переменные x 1 и x 6 меняются местами.

Оценочные отношения Θ i в каждой строке определяются по правилам:

1) Θ i = , если b i и a is имеют разные знаки;

2) Θ i = ∞, если b i = 0 и a is < 0;

3) Θ i = ∞, если a is = 0;

4) Θ i = 0, если b i = 0 и a is > 0;

5) Θ i = , если b i и a is имеют одинаковые знаки.

Совершаем шаг модифицированного жорданова исключения (ШМЖИ) с разрешающим элементом и составляем новую таблицу (табл. 2) по следующему правилу:

1) на месте разрешающего элемента (РЭ) устанавливается величина, ему обратная, т.е. ;

2) элементы разрешающей строки делятся на РЭ;

3) элементы разрешающего столбца делятся на РЭ и знак меняется;

4) остальные элементы находятся по правилу прямоугольника:

Из табл. 2 видно, что свободные члены в b i -столбце являются неотрицательными, следовательно, получено первоначальное допустимое решение – первый опорный план = (10; 0; 182; 5; 4; 0). При этом значение функции F () = 40. Геометрически это соответствует вершине F (10; 0) многоугольника решений (рис. 1).

Таблица 2

2. Проверяем план на оптимальность. Опорный план не оптимальный, так как в F -строке имеется отрицательный коэффициент «–4». Улучшаем план.

3. Нахождение нового опорного плана

Выбираем разрешающий элемент по правилу:

Выбираем наименьший отрицательный коэффициент в F -строке «–4», который и определяет разрешающий столбец – x 6 ; переменную x 6 переводим в базисные;

Находим отношения Θ i , среди них выбираем наименьшее положительное, которое соответствует разрешающей строке:

min Θ i = min {14, 5, 2, ∞} = 2, следовательно, x 5 -строка – разрешающая, переменную x 5 переводим в свободные (переменные x 5 и x 6 меняются местами).

На пересечении разрешающих строки и столбца стоит разрешающий элемент «2»;

Выполняем шаг ШМЖИ, строим табл. 3 по вышеприведенному правилу и получаем новый опорный план = (12; 0; 156; 3; 0; 2).

Таблица 3

4. Проверка нового опорного плана на оптимальность

Опорный план также не является оптимальным, так как в F -строке имеется отрицательный коэффициент «–1». Значение функции F () = 48, что геометрически соответствует вершине E (12; 0) многоугольника решений (рис. 1). Улучшаем план.

5. Нахождение нового опорного плана

x 2 -столбец – разрешающий, так как в F -строке наименьший отрицательный коэффициент «–1» находится в x 2 -столбце (Δ 2 = –1). Находим наименьшее Θ i : min Θ i = min {≈ 9, 6, ∞, 24} = 6, следовательно, x 4 -строка – разрешающая. Разрешающий элемент «1/2». Меняем местами переменные x 2 и x 4 . Выполняем шаг ШМЖИ, строим табл. 4, получаем новый опорный план = (9; 6; 51; 0; 0; 5).

6. Проверка опорного плана на оптимальность

В F -строке все коэффициенты неотрицательны, следовательно, опорный план является оптимальным. Геометрически соответствует точке D (9;6) (см. рис. 1). Оптимальный план дает максимальное значение целевой функции у.е.

Для изготовления трех видов рубашек используются нитки, пуговицы и ткань. Запасы ниток, пуговиц и ткани, нормы их расхода на пошив одной рубашки указаны в таблице. Найти максимальную прибыль и оптимальный план выпуска изделий ее обеспечивающий (найти ).

рубашка 1 рубашка 2 рубашка 3 Запасы нитки (м.) 1 9 3 96 пуговицы (шт.) 20 10 30 640 ткань ( 1 2 2 44 Прибыль (р.) 2 5 4

Решение задачи

Построение модели

Через и количество рубашек 1-го, 2-го и 3-го вида, предназначенных к выпуску.

Тогда ограничения на ресурсы будут иметь следующий вид:

Кроме того, по смыслу задачи

Целевая функция, выражающая получаемую прибыль:

Получаем следующую задачу линейного программирования:

Приведение задачи линейного программирования к каноническому виду

Приведем задачу к каноническому виду. Введем дополнительные переменные. В целевую функцию все дополнительные переменные введем с коэффициентом, равным нулю. Дополнительные переменные прибавим к левым частям ограничений, не имеющих предпочтительного вида, и получим равенства.

Решение задачи симплекс-методом

Заполняем симплексную таблицу:

Так как мы решаем задачу на максимум – наличие в индексной строке отрицательных чисел при решении задачи на максимум свидетельствует о том, что нами оптимальное решение не получено и что от таблицы 0-й итерации необходимо перейти к следующей.

Переход к следующей итерации осуществляем следующим образом:

ведущий столбец соответствует

Ключевая строка определяется по минимуму соотношений свободных членов и членов ведущего столбца (симплексных отношений):

На пересечении ключевого столбца и ключевой строки находим разрешающий элемент, т.е. 9.

Теперь приступаем к составлению 1-й итерации: Вместо единичного вектора вводим вектор .

В новой таблице на месте разрешающего элемента пишем 1, все остальные элементы ключевого столбца –нули. Элементы ключевой строки делятся на разрешающий элемент. Все остальные элементы таблицы вычисляются по правилу прямоугольника.

Ключевой столбец для 1-й итерации соответствует

Разрешающим элементов является число 4/3. Вектор выводим из базиса и вводим вместо него вектор . Получаем таблицу 2-й итерации.

Ключевой столбец для 2-й итерации соответствует

Находим ключевую строку, для этого определяем:

Разрешающим элементов является число 10/3. Вектор выводим из базиса и вводим вместо него вектор . Получаем таблицу 3-й итерации.

БП c Б A o x 1 x 2 x 3 x 4 x 5 x 6 Симплексные 2 5 4 0 0 0 отношения 0 x 4 0 96 1 9 3 1 0 0 32/3 x 5 0 640 20 10 30 0 1 0 64 x 6 0 44 1 2 2 0 0 1 22 F j - c j 0 -2 -5 -4 0 0 0 1 x 2 5 32/3 1/9 1 1/3 1/9 0 0 32 x 5 0 1600/3 170/9 0 80/3 -10/9 1 0 20 x 6 0 68/3 7/9 0 4/3 -2/9 0 1 17 F j - c j 160/3 -13/9 0 -7/3 5/9 0 0 2 x 2 5 5 -1/12 1 0 1/6 0 -1/4 -- x 5 0 80 10/3 0 0 10/3 1 -20 24 x 3 4 17 7/12 0 1 -1/6 0 3/4 204/7 F j - c j 93 -1/12 0 0 1/6 0 7/4 3 x 2 5 7 0 1 0 1/4 1/40 -3/4 x 1 2 24 1 0 0 1 3/10 -6 x 3 4 3 0 0 1 -3/4 -7/40 17/4 F j - c j 95 0 0 0 1/4 1/40 5/4

В индексной строке все члены неотрицательные, поэтому получен следующее решение задачи линейного программирования (выписываем из столбца свободных членов):

Необходимо шить 24 рубашки 1-го вида, 7 рубашек 2-го вида и 3 рубашки 3-го вида. При этом получаемая прибыль будет максимальна и составит 95 руб.

Помощь в решении ваших задач по этому предмету вы можете найти, отправив сообщение в ВКонтакте , на Viber или заполнив форму . Стоимость решения домашней работы начинается от 7 бел.руб. за задачу (200 рос.руб.), но не менее 10 бел.руб. (300 рос.руб.) за весь заказ. Подробное оформление. Стоимость помощи на экзамене онлайн (в этом случае необходима 100% предоплата) - от 30 бел.руб. (1000 рос.руб.) за решение билета.

Понравилось? Добавьте в закладки

Решение задач симплекс-методом: примеры онлайн

Задача 1. Компания производит полки для ванных комнат двух размеров - А и В. Агенты по продаже считают, что в неделю на рынке может быть реализовано до 550 полок. Для каждой полки типа А требуется 2 м2 материала, а для полки типа В - 3 м2 материала. Компания может получить до 1200 м2 материала в неделю. Для изготовления одной полки типа А требуется 12 мин машинного времени, а для изготовления одной полки типа В - 30 мин; машину можно использовать 160 час в неделю. Если прибыль от продажи полок типа А составляет 3 денежных единицы, а от полок типа В - 4 ден. ед., то сколько полок каждого типа следует выпускать в неделю?

Задача 2. Решить задачу линейного программирования симплекс-методом.

Задача 3. Предприятие производит 3 вида продукции: А1, А2, А3, используя сырьё двух типов. Известны затраты сырья каждого типа на единицу продукции, запасы сырья на планируемый период, а также прибыль от единицы продукции каждого вида.

  1. Сколько изделий каждого вида необходимо произвести, чтобы получить максимум прибыли?
  2. Определить статус каждого вида сырья и его удельную ценность.
  3. Определить максимальный интервал изменения запасов каждого вида сырья, в пределах которого структура оптимального плана, т.е. номенклатура выпуска, не изменится.
  4. Определить количество выпускаемой продукции и прибыль от выпуска при увеличении запаса одного из дефицитных видов сырья до максимально возможной (в пределах данной номенклатуры выпуска) величины.
  5. Определить интервалы изменения прибыли от единицы продукции каждого вида, при которых полученный оптимальный план не изменится.

Задача 4. Решить задачу линейного программирования симплексным методом:

Задача 5. Решить задачу линейного программирования симплекс-методом:

Задача 6. Решить задачу симплекс-методом, рассматривая в качестве начального опорного плана, план, приведенный в условии:

Задача 7. Решить задачу модифицированным симплекс-методом.
Для производства двух видов изделий А и Б используется три типа технологического оборудования. На производство единицы изделия А оборудование первого типа используется а1=4 часов, оборудование второго типа а2=8 часов, а оборудование третьего типа а3=9 часов. На производство единицы изделия Б оборудование первого типа используется б1=7 часов, оборудование второго типа б2=3 часов, а оборудование третьего типа б3=5 часов.
На изготовление этих изделий оборудование первого типа может работать не более чем t1=49 часов, оборудование второго типа не более чем t2=51 часов, оборудование третьего типа не более чем t3=45 часов.
Прибыль от реализации единицы готового изделия А составляет АЛЬФА=6 рублей, а изделия Б – БЕТТА=5 рублей.
Составить план производства изделий А и Б, обеспечивающий максимальную прибыль от их реализации.

Задача 8. Найти оптимальное решение двойственным симплекс-методом

Похожие публикации