Wi fi с технологией mimo. Технология передачи данных MIMO в беспроводных сетях WIFI. MIMO - м ногоантенные технологии в LTE

27.08.2015

Наверняка, многие уже слышали про технологию MIMO , в последние годы её частенько пестрят рекламные проспекты и плакаты, особенно в компьютерных магазинах и журналах. Но что же такое MIMO (МИМО) и с чем её едят? Давайте разберёмся поподробнее.

Технология MIMO

MIMO (Multiple Input Multiple Output; множественные входы, множественные выходы) — метод пространственного кодирования сигнала, позволяющий увеличить полосу пропускания канала, при котором для передачи данных используются две и более антенны и такое же количество антенн для приёма. Передающие и приёмные антенны разнесены настолько, чтобы достичь минимального взаимного влияния друг на друга между соседними антеннами. Технология MIMO используется в беспроводных связи Wi-Fi, WiMAX, LTE для увеличения пропускной способности и более эффективного использования частотной полосы. Фактически MIMO позволяет в одном частотном диапазоне и заданном частотном коридоре передавать больше данных, т.е. увеличить скорость. Достигается это за счёт использования нескольких передающих и принимающих антенн.

История MIMO

Технологию MIMO можно отнести к достаточно моложим разработкам. Её история начинается в 1984 году, когда был зарегистрирован первый патент на использования данной технологии. Начальные разработки и исследования проходили в компании Bell Laboratories , а 1996 году компание Airgo Networks был выпущен первый MIMO-чипсет под названием True MIMO . Наибольшее развитие технология MIMO получила в начале XXI века, когда бурными темпами начали развиваться беспроводные сети Wi-Fi и сотовые сети 3G. А сейчас технология MIMO вовсю используется в сетях 4G LTE и Wi-Fi 802.11b/g/ac.

Что даёт технология MIMO?

Для конечного пользователя MIMO даёт значительный прирост в скорости передачи данных. В зависимости от конфигурации оборудования и количества используемых антенн, можно получить двухкратный, трёкратный и до восьмикратного увеличения скорости. Обычно в беспроводных сетях используется одинаковое количество передающих и принимающих антенн, и записывается это как, например, 2х2 или 3х3. Т.е. если видим запись MIMO 2x2, значит две антенны передают сигнал и две принимают. Например, в стандарте Wi-Fi один канал шириной 20 Мгц даёт пропускную способность 866 Мбит/с, тогда как в конфигурации MIMO 8x8 объединяются 8 каналов, что даёт максимальную скорость около 7 Гбит/с. Аналогично и в LTE MIMO - потенциальный рост скорости в несколько раз. Для полноценного использования MIMO в сетях LTE необходимы , т.к. как правило встроенные антенны недостаточно разнесены и дают малый эффект. И конечно, должна быть поддержка MIMO со стороны базовой станции.

LTE-антенна с поддержкой MIMO передаёт и принимает сигнал в горизонтальной и вертикальной плоскостях. Это называется поляризация. Отличительной особенностью MIMO-антенн является наличие двух антенных разъёмов, и соответственно использование двух проводов для подключения к модему/роутеру.

Несмотря на то, что многие говорят, и не безосновательно, что MIMO-антенна для сетей 4G LTE фактически представляет собой две антенны в одной, не стоит думать, что при использовании такой антенны будет двухкратный рост скорости. Таковым он может быть только в теории, а на практике разница между обычной и MIMO-антенной в сети 4G LTE не превышает 20-25%. Однако, более важным в данном случае будет стабильный сигнал, который может обеспечить MIMO-антенна.

Технология на базе стандарта WiFi IEEE 802.11n.

Wi - Life представляет краткий обзор по технологии WiFi IEEE 802.11 n .
Расширенная информация к нашей видеопубликации .

Первое поколение устройств с поддержкой стандарта WiFi 802.11n появилось на рынке несколько лет назад. Технология MIMO (MIMO - multiple input / multiple output -множественные входы/множественные выходы) является стержнем 802.11n. Это радиосистема с множеством раздельных путей передачи и приема. MIMO-системы описываются с использованием количества передатчиков и приемников. Стандарт WiFi 802.11n определяет набор возможных комбинаций от 1х1 до 4х4.


В типичном случае развертывания сети стандарта Wi-Fi внутри помещения, например в офисе, цеху, ангаре, больнице радиосигнал редко идет по кратчайшему пути между передатчиком и приемником из-за стен, дверей и других препятствий. Большинство подобных окружений имеют много различных поверхностей, которые отражают радиосигнал (электромагнитную волну) подобно зеркалу, отражающему свет. После переотражения образуются множественные копии исходного сигнала WiFi. Когда множественные копии WiFi-сигнала перемещаются различными путями от передатчика к приемнику сигнал шедший кратчайшим путем будет первым, а следующие копии (или переотраженное эхо сигнала) придут чуть позже из-за более длинных путей. Это называют многолучевым распространением сигнала (multipath). Условия множественного распространения постоянно меняются, т.к. Wi-Fi-устройства часто перемещаются (смартфон с Wi-Fi в руках пользователя), движутся вокруг различные объекты создавая помехи (люди, машины и т.п.). В случае прибытия сигналов в разное время и под разными углами это может вызывать искажения и возможное затухание сигнала.

Важно помнить, что поддержка WiFi 802.11 n c MIMO и большим количеством приемников может снизить эффект многолучевого распространения и деструктивную интерференцию, но в любом случае лучше уменьшать условия многолучевого распространения где и как только возможно. Один из важнейших моментов - держите антенны как можно дальше от металлических предметов (прежде всего омни антенны WiFi, которые имеют круговую или всенаправленную диаграмму направленности).

Необходимо четко понимать, что далеко не все Wi -Fi клиенты и Точки Доступа стандарта WiFi одинаковы с точки зрения MIMO .
Существуют клиенты 1х1, 2х1, 3х3 и т.д. Например мобильные устройства типа сматрфона чаще всего поддерживают MIMO 1x 1, иногда 1x 2. Это связано с двумя ключевыми проблемами:
1. необходимость обеспечения низкого потребления энергии и долгой жизни аккумулятора,
2. сложность в расположении нескольких антенн с адекватным их разнесением в небольшом корпусе.
Это же касается и других мобильных устройств: планшетных компьютеров, КПК и т.п..

Ноутбуки выского уровня довольно часто уже сейчас поддерживают MIMO вплоть до 3х3 (MacBook Pro и тп).


Давайте рассмотрим основные типы MIMO в сетях стандарта WiFi .
Сейчас мы опустим детализацию количества передатчиков и приемников. Важно понять принцип.

Первый тип : Разнесение при Получении сигнала на WiFi устройстве

Если в точке приема есть не менее двух связанных приемников с разнесенными антеннами,
то вполне реально провести анализ всех копий на каждом приемнике для выбора лучших сигналов.
Далее с этими сигналами можно проводить различные манипуляции, но нас интересует, прежде всего,
возможность их комбинирования с помощью технологии MRC (Maximum Ratio Combined ). Технология MRC подробнее будет рассмотрена далее.

Второй тип : Разнесение при Отправке сигнала на WiFi устройстве

Если в точке отправки есть не менее двух связанных передатчиков WiFi с разнесенными антеннами, то появляется возможность отправки группы идентичных сигналов для увеличения количества копий информации, повышения надежности на передаче и снижения необходимости перепосылки данных в радиоканале, в случае их потерь.

Третий тип : Пространственное мультиплексирование сигналов на устройстве стандарта WiFi
(объединение сигналов)

Если в точке отправки и в точке приема есть не менее двух связанных передатчиков WiFi с разнесенными антеннами, то появляется возможность отправки набора разной информации поверх разных сигналов с целью создания возможности виртуального объединения таких информационных потоков в один канал передачи данных, общая пропускная способность которого стремится к сумме отдельных потоков, из которых он состоит. Это называется Пространственным мультиплексированием. Но здесь крайне важно обеспечить возможность качественного разделения всех исходных сигналов, что требует большой величины SNR - соотношения сигнал/шум.

Технология MRC (maximum ratio combined ) используется во многих современных Точках Доступа Wi - Fi корпоративного класса.
MRC направлен на подъем уровня сигнала в направлении от Wi - Fi клиента к Точке Доступа WiFi 802.11.
Алгоритм работы
MRC подразумевает сбор на нескольких антеннах и приемниках всех прямых и переотраженных при многолучевом распространении сигналов. Далее специальный процессор (DSP ) отбирает лучший сигнал с каждого приемника и выполняет комбинирование. Фактически математическая обработка реализует виртуальный фазовый сдвиг для создания положительной интерференции со сложением сигналов. Таким образом результирующий суммарный сигнал значительно лучше по характеристикам, чем все исходные.

MRC позволяет обеспечивать значительно лучшие условия работы маломощных мобильных устройств в сети стандарта Wi - Fi .


В системах WiFi 802.11n достоинства многолучевого распространения используются для одновременной передачи нескольких радиосигналов. Каждый из этих сигналов, называемых «пространственными потоками », отправляется с отдельной антенны с помощью отдельного передатчика. Вследствие наличия некоторого расстояния между антеннами каждый сигнал следует к приемнику по немного отличающемуся пути. Этот эффект называется «пространственным разнесением ». Приемник также оборудован несколькими антеннами со своими отдельными радиомодулями, которые независимо декодируют поступающие сигналы, и каждый сигнал объединяется с сигналами от других приемных радиомодулей. В результате этого одновременно осуществляется прием нескольких потоков данных. Это обеспечивает значительно более высокую пропускную способность, чем в прежних системах стандарта WiFi 802.11, но и требует наличия клиента с поддержкой 802.11n.


Теперь немного углубимся в данную тему:
В устройствах стандарта WiFi с MIMO возможно разделение всего входящего информационного потока на несколько различных потоков данных с помощью пространственного мультиплексирования для последующей их отправки. Используется несколько передатчиков и антенн для отправки различных потоков в одном частотном канале. Можно визуализировать это таким образом, что некоторая текстовая фраза может передаваться так что первое слово отправляется через один передатчик, второе через другой передатчик и т.д.
Естественно, принимающая сторона должна поддерживать такой же функционал (MIMO) для полноценного выделения различных сигналов, их пересборки и объединения с помощью опять же пространственного мультиплексирования. Так мы получаем возможность восстановить исходный информационный поток. Представленная технология позволяет разделить большой поток данных на набор меньших потоков и передавать их отдельно один от другого. В целом это дает возможность более эффективно утилизировать радиосреду и конкретно частоты выделенные для Wi-Fi.

Технология стандарта WiFi 802.11n также определяет как MIMO может быть использована для улучшения уровня SNR на приемнике используя управление диаграммой направленности на передаче (transmit beamforming). С данной техникой возможно управлять процессом отправки сигналов с каждой антенны так, чтобы улучшились параметры принимаемого сигнала в приемнике. Другими словами в дополнение к отправке множественных потоков данных могут быть использованы множественные передатчики, чтобы достичь более высокого SNR в точке приема и, в результате, большей скорости передачи данных на клиенте.
Необходимо отметить следующие вещи:
1. Процедура управления диаграммой направленности (transmit beamforming), определенная в стандарте Wi-Fi 802.11n, требует совместной работы с приемником (фактически с клиентским устройством) для получения обратной связи о состоянии сигнала на приемнике. Здесь необходимо иметь поддержку этой функциональности на обеих сторонах канала - как на передатчике, так и на приемнике.
2. В силу сложности данной процедуры управление диаграммой направленности (transmit beamforming) не было поддержано в первом поколении чипов 802.11n как на стороне терминалов, так и на стороне Точек Доступа. В настоящее время большинство существующих чипов для клиентских устройств также Не поддерживают данный функционал.
3. Существуют решения для построения сетей Wi - Fi , которые позволяют полноценно управлять диаграммой направленности на Точках Доступа без необходимости получения обратной связи от клиентских устройств.


Для получения анонсов при выходе новых тематических статей или появлении новых материалов на сайте предлагаем .

Присоединяйтесь к нашей группе на

Для того, чтобы лучше понять принцип работы MIMO антенны давайте вообразим следующую ситуацию: базовая станция (БС) оператора мобильной сети и модем стали двумя географическими пунктами А и Б, между этими объектами проложен определенный путь, люди, передвигающиеся по этому пути олицетворяют информацию, А - это ваша приемная Антенна, Б - это БС сотового оператора. Люди передвигаются из одного пункта в другой с помощью поезда, вместимость которого- 100 человек. Но людей, которые хотят из пункта Б добраться в пункт А гораздо больше. Поэтому строится второй путь и запускается новый поезд, вместимость которого, тоже 100 человек. Таким образом, производительность и эффективность двух поездов в 2 раза выше.

Точно также же устроена и новейшая технология MIMO (англ. Multiple Input Multiple Output) , она позволяет принимать одновременно больше потоков. Для этого используются различные поляризации сигналов, например горизонтальная и вертикальная - 2х2. Раньше, чтобы принимать больше информации, то есть больше потоков, потребовалось бы приобретение двух простых антенн.

Сегодня же достаточно приобрести только одну антенну MIMO. Улучшенная антенна MIMO содержит в одном корпусе сразу два набора излучающих элементов, так называемых патчей, каждый из которых подключен к отдельному гнезду. Второй вариант устройства: имеется один набор патчей и запитка для двух портов, что позволяет патчу функционировать в двух направлениях: горизонтальном и вертикальном. В этом случае к двум гнездам присоединяется единственный набор патчей. Именно второй вариант (с двумя кабельными вводами) вы можете найти в ассортименте нашей компании.

А как же подключить 2 кабеля, выходящих из мимо-антенны к одному модему? Все очень просто. Сегодня не только антенны поддерживают эту функцию, но и модемы. Существуют модемы с 2 входами для подключения внешних антенн, например широко распространенный Huawei .

Преимущества технологии MIMO

К главным преимуществам относится возможность улучшения пропускной способности, не расширяя при этом полосу. Так устройство одновременно раздает несколько потоков информации по единственному каналу.

Качество передаваемого сигнала и скорость передачи данных становится лучше. Потому что технология сначала кодирует данные, а затем на приемной стороне восстанавливает их.

Более чем в два раза увеличивается скорость трансляции сигнала.

Увеличиваются и многие другие параметры скорости за счет использования двух независимых кабелей, через которые одновременно происходит раздача и получение информации в виде цифрового потока. Улучшаются качества спектра следующих систем: 3G, 4G/LTE, WiMAX, WiFi, благодаря использованию двух входов и двух выходов.

Сфера применения антенн MIMO

Чаще всего технология MIMO применяется для передачи данных такого протокола, как WiFi. Это объясняется увеличенными пропускной способностью и емкостью. Для примера возьмем протокол 802.11n, в нем при использовании описываемой технологии, можно достичь скорость до 350 Мегабит/сек. Также улучшилось качество передачи данных, даже на тех участках, где сигнал приема низкий. Примером уличной точки доступа с антенной MIMO может послужить всем известная .

Сеть WiMAX, при использовании MIMO, теперь может транслировать информацию со скоростью до 40 Мегабит/секунду.

В применяется технология MIMO до 8x8. Благодаря этому достигается высокая скорость передачи - более 35 Мегабит/секунду. Помимо этого, обеспечивается надежное и высококачественное соединение отличного качества.

Постоянно ведутся работы по улучшению и усовершенствованию конфигураций технологии. В скором времени это позволит улучшить показатели спектра, усовершенствовать емкость сетей и ускорить скорость передачи данных.

Технология MIMO сыграла огромную роль в развитии WiFi. Несколько лет назад невозможно было представить и другие устройства с пропускной способностью в 300 Мбит/сек и выше. Появление новых скоростных стандартов связи, к примеру, 802.11n произошло во многом благодаря MIMO.

Вообще тут стоит упомянуть, что когда мы говорим о технологии WiFi, то на самом деле имеем в виду один из стандартов связи, а конкретно - IEEE 802.11. Брендом WiFi стал после того, как обрисовались заманчивые перспективы использования беспроводной передачи данных. Чуть подробнее о технологии вай-фай и стандарте 802.11 можно прочесть в .

Что представляет собой технология MIMO?

Если дать как можно более простое определение, то MIMO - это многопотоковая передача данных . Аббревиатуру можно перевести с английского как «несколько входов, несколько выходов» В отличие от предшественника (SingleInput/SingleOutput), в устройствах с поддержкой MIMO сигнал транслируется на одном радиоканале с помощью не одного, а нескольких приемников и передатчиков. При обозначении технических характеристик устройств WiFi рядом с аббревиатурой указывают их количество. Например, 3х2 - это 3 передатчика сигнала и 2 принимающих антенны.

Кроме того, в MIMO используется пространственное мультиплексирование . За устрашающим названием кроется технология одновременной передачи нескольких пакетов данных по одному каналу. Благодаря такому «уплотнению» канала его пропускную способность можно увеличить в два раза и более.

MIMO и WiFi

С ростом популярности беспроводной передачи данных по WiFi соединениям, конечно же, возросли требования к их скорости. И именно технология MIMO и другие разработки, взявшие ее за основу, позволили увеличить пропускную способность в несколько раз. Развитие WiFi идет по пути развития стандартов 802.11 - a, b, g, n и так далее. Мы не зря упомянули возникновение стандарта 802.11n. Multiple Input Multiple Output - его ключевой компонент, позволивший увеличить канальную скорость беспроводного соединения с 54 Мбит/сек до более 300 Мбит/сек.

Стандарт 802.11n позволяет применять как стандартную ширину канала в 20 МГц, так и использовать широкополосную линию в 40 МГц с более высокими показателями пропускной способности. Как уже упоминалось выше, сигнал многократно отражается, тем самым используя множество потоков на одном канале связи.

Благодаря этому доступ в интернет на основе WiFi теперь позволяет не только серфинг, проверку почты и общение в аське, но и онлайн-игры, онлайн-видео, общение в скайпе и прочий «тяжелый» трафик.

Более новый стандарт - также использует технологию MIMO.

Проблемы применения MIMO в WIFI

На заре становления технологии существовало затруднение совмещения устройств, работающих с поддержкой MIMO и без нее. Однако сейчас это уже не так актуально - практически каждый уважающий себя производитель беспроводного оборудования использует ее в своих устройствах.

Также одной из проблем при появлении технологии передачи данных с помощью нескольких приемников и нескольких передатчиков являлась цена устройства. Однако здесь настоящую ценовую революцию совершила компания . Ей не только удалось наладить производство беспроводного оборудования с поддержкой MIMO, но и сделать это по очень демократичным ценам. Посмотрите, к примеру, стоимость типичного комплекта компании - (базовая станция), (на стороне клиента). И в этих устройствах не просто MIMO, а фирменная улучшенная технология airMax на ее основе.

Проблемой остается только увеличение количества антенн и передатчиков (сейчас максимум 3) для устройств с PoE. Обеспечить питанием более энергоемкую конструкцию затруднительно, но опять-таки, постоянные сдвиги в этом направлении делает Ubiquiti.

Технология AirMAX

Компания Ubiquiti Networks является признанным лидером разработки и реализации инновационных технологий WiFi, в том числе и MIMO. Именно на ее основе Ubiquiti была разработана и запатентована технология AirMAX . Суть ее в том, что прием-передача сигнала несколькими антеннами на одном канале упорядочивается и структурируется протоколом TDMA с аппаратным ускорением: пакеты данных разнесены в отдельные временные слоты, очереди передачи координируются.

Это позволяет расширить пропускную способность канала, увеличить количество подключаемых абонентов без потери качества связи. Данное решение эффективно, удобно в использовании и, что немаловажно - недорого. В отличие от аналогичного оборудования, используемого в WiMAX - сетях, оборудование от Ubiquiti Networks с технологией AirMAX приятно радует ценами.


сайт

Один из подходов к увеличению скорости передачи данных для WiFi стандарта 802.11 и для WiMAX стандарта 802.16 – это использование беспроводных систем с применением нескольких антенн, как для передатчика, так и для приемника. Такой подход называется MIMO (дословный перевод - «множественный вход множественный выход»), или «умная антенная системы» (smart antenna systems). Технология MIMO играет важную роль в реализации WiFi стандарта 802.11n.

В технологии MIMO применяются несколько антенн различного рода, настроенных на одном и том же канале. Каждая антенна передает сигнал с различными пространственными характеристиками. Таким образом, технология MIMO использует спектр радиоволн более эффективно и без ущерба для надежности работы. Каждый wi-fi приемник «прислушивается» ко всем сигналам от каждого wifi передатчика, что позволяет делать пути передачи данных более разнообразными. Таким образом, несколько путей могут быть перекомбинированы, что приведет к усилению требуемых сигналов в беспроводных сетях.

Еще один плюс технологии MIMO в том, что данная технология обеспечивает пространственное деление мультиплексирования (Spatial Division Multiplexing (SDM)). SDM пространственно уплотняет несколько независимых потоков данных одновременно (в основном, виртуальных каналов) внутри одной спектральной полосы пропускания канала. В сущности, несколько антенн передают различные потоки данных с индивидуальной кодировкой сигналов (пространственные потоки). Эти потоки, двигаясь параллельно по воздуху «пропихивают» больше данных по заданному каналу. На приемнике каждая антенна видит разные сочетания сигнальных потоков и приемник «демултиплексирует» эти потоки для их использования. MIMO SDM может значительно увеличить пропускную способность для передачи данных, если увеличить число пространственных потоков данных. Каждому пространственному потоку необходимы свои собственные передающие / принимающие (TX / RX) антенные пары на каждом конце передачи. Работа системы представлена на рис.1

Также необходимо понимать, что для реализации технологии MIMO требуется отдельная радиочастотная цепь и аналого-цифровой преобразователь (АЦП) для каждой антенны. Реализации, требующие более двух антенн в цепи должны быть тщательно спроектированы для того, чтобы не увеличивать расходы при сохранении надлежащего уровня эффективности.

Важным инструментом для повышения физической скорости передачи данных в беспроводных сетях, является расширение полосы пропускания спектральных каналов. Благодаря использованию более широкой полосы пропускания канала с ортогональным частотным разделением мультиплексирования (OFDM) передача данных осуществляется с максимальной производительностью. OFDM является цифровой модуляцией, которая отлично себя зарекомендовала в качестве инструмента для осуществления двунаправленной высокоскоростной беспроводной передачи данных в WiMAX / WiFi сетях. Метод расширения пропускной способности каналов является экономически эффективным и достаточно легко реализуемым с умеренным ростом цифровой обработки сигнала (DSP). При правильном применении, можно удвоить частоту пропускания стандарта Wi-Fi 802.11 с 20 МГц канала на 40 МГц, также можно обеспечить более чем в два раза увеличенную пропускную способность каналов, используемых в настоящее время. Благодаря объединению MIMO архитектуры с более широкой полосой пропускания канала, получается очень мощный и экономически целесообразный подход для повышения физической скорости передачи.

Применение MIMO технологии с 20 МГц каналами требует больших затрат для удовлетворения требований IEEE по WiFi стандарту 802.11n (100 Мбит / с пропускной способности на MAC SAP). Также для удовлетворения этих требований при использовании канала в 20 МГц понадобиться, по меньшей мере, по три антенны, как на передатчике, так и на приемнике. Но в то же время работа на 20 МГц канале обеспечивает надежную работу с приложениями, требующими высокую пропускную способность в реальной пользовательской среде.

Совместное применение технологий MIMO и расширения канала отвечает всем требованием пользователя и являет собой достаточно надежный тандем. Это так же верно и при использовании одновременно нескольких ресурсоемких сетевых приложений. Комбинация MIMO и 40 МГц расширения канала позволит отвечать и более сложным требованиям, таким как Закон Мура и выполнение технологии CMOS совершенствования DSP технологии.

При применении расширенного канала 40 МГц в диапазоне 2.4 ГГц, изначально возникли трудности с совместимостью с оборудованием на основе WiFi стандартов 802.11a /b/g, а также с оборудованием, использующим технологию Bluetooth для передачи данных.

Для решения этой проблемы в Wi-Fi стандарте 802.11n предусмотрен целый ряд решений. Одним из таких механизмов, специально предназначенным для защиты сетей, является так называемая невысокая пропускная способность (non-HT) дублированного режима. Перед использованием протокола передачи данных WiFi стандарта 802.11n этот механизм отправляет по одному пакету на каждую из половинок 40 МГц канала для объявления сети распределения вектора (NAV). Следуя non-HT дублированного режима NAV сообщению, протокол передачи данных стандарта 802.11n может быть использован в течении заявленного в сообщение время, без нарушения наследия (целостности) сети.

Другой механизм является своего рода сигнализацией и не дает беспроводным сетям расширять канал более чем 40 МГц. Например, в ноутбуке установлены модули 802.11n и Bluetooth, данный механизм знает о возможности возникновения потенциальных помех при работе этих двух модулей одновременно и отключает передачу по каналу 40 МГц одного из модулей.

Эти механизмы гарантируют, что WiFi 802.11n будут работать с сетями более ранних стандартов 802.11 без необходимости перевода всей сети на оборудование стандарта 802.11n.

Увидеть пример использования системы MIMO можно на рис.2

Если у Вас после прочтения возникнут какие-либо вопросы, Вы можете задать их через форму отправки сообщений в разделе

Похожие публикации