Амплитудно модулированный сигнал. Амплитудно-модулированные сигналы и их спектры. Однополосная амплитудная модуляция

При ам­плитудной модуляции в соответствии с законом передаваемого со­общения меняется амплитуда модулируемого сигнала. Амплитудная модуляция - наиболее распространенный тип аналоговой модуляции в системах радиосвязи, радиовещания и телевидения.

Простейшая разновидность амплитудной модуляции -однотональная (от слова тон - звук одной частоты), при которой модулирующий сигнал представляет собой гармоническое колебание:

где
- амплитуда модулирующего сигнала (максимальная высота синусоиды) ;

- круговая (угловая) частота,
;

- период модулирующего колебания;

- начальная фаза.

В качестве несущего колебания в системах связи и вещания практически всегда применяется высокочастотный гармонический сигнал.

Примем в качестве тестового аналогового сообщения синусои­дальный сигнал:

(40)

Несущие, т.е. модулируемые колебания

(41)

где частота несущих колебаний
- частоты модулирующего колебания.

В результате воздействия колебания (40) на амплитуду несущих колебаний (41) получим сигнал с амплитудной модуляцией:

где
- коэффициент амплитудной модуляции.

Графики трех названных колебаний приведены на рис. 13 и рис. 14.

С целью наглядности на рис. 15, а , б изображены графики модулирующего колебания при
, несущего – при
.

      1. Спектр амплитудно-модулированного сигнала

Из (42) получим выражение:

которое в соответствии с формулой для произведения тригономет­рических функций приведем к виду

из которого следует, что спектр колебания при амплитудной моду­ляции тональным сигналом состоит из трех составляющих с часто­тами: (совпадает с частотой несущей), (
) (нижняя боковая), (
) (верхняя боковая). Амплитуда боковой состав­ляющей
.

Рис. 15. Амплитудная модуляция

a - модулирующий (управляющий) сигнал; б - несущее колебание (радиочастотный сигнал); в - амплитудно-модулированный сигнал.

Ширина спектра AM колебания
. Следовательно, имея базуB=1, сигнал при ампли­тудной модуляции относится к классу узкополосных.

При модуляции более сложным сообщением, занимающим спектр от
до
(рис. 16,а), соответственно изменится и спектр AM колебания, представленный на рис. 16,б.

Спектр амплитудно-модулированного сигнала - совокупность простых (гармонических) колебаний (составляющих) разных частот и амплитуд, на которые может быть разложен по частотной оси сложный колебательный процесс, т.е. АМ-сигнал. Аналитическое выражение для такого сигнала с учетом тригонометрической формулы произведения косинусов можно представить в виде суммы колебаний:

(45)

Из формулы (44) видно, что при однотональной модуляции спектр АМ-сигнала состоит из трех высокочастотных составляющих: исходного несущего колебания амплитудой
и частотой, а также двух новых гармонических колебаний с разными частотами
и
, но одинаковыми амплитудами
/2 , появляющихся в процессе амплитудной модуляции и отражающих передаваемое сообщение.

Колебания с частотами
и
называют соответственно верхней и нижней боковыми составляющими (частотами). Они расположены симметрично относительно несущей частоты.

Спектр однотонального АМ-сигнала показан на рис. 17. Из рисунка наглядно видно, что ширина спектра АМ-сигнала (
) при однотональной модуляции равна удвоенному значению частоты модуляции:

(46)

где F – циклическая частота модуляции (модулирующего сигнала).

При отсутствии модуляции (M = 0) амплитуды боковых составляющих равны нулю и спектр АМ-сигнала преобразуется в спектр несущего колебания (составляющая
на частоте). В случае модулирования несущей сигналом сложной формы, состоящим из нескольких гармоник разных частот, каждая гармоника модулирующего (управляющего) сигнала создает две боковые частоты в спектре радиосигнала, расположенные симметрично относительно несущей частоты. Следовательно, спектр такого АМ-сигнала состоит из несущей и двух боковых полос - верхней и нижней. Ширина каждой боковой полосы равна
, a ширина спектра сложного АМ-сигнала оказывается равной удвоенному значению наивысшей частоты в спектре модулирующего сигнала (рис. 18).

Амплитудно-модулированные сигналы и их спектры

При амплитудной модуляции (АМ) амплитуда несущего сигнала подвергается воздействию сигнала сообщения. Мгновенное значение АМ колебания с гармонической несущей может быть записано в виде

где U m (t) – «переменная амплитуда» или огибающая амплитуд;

– круговая частота несущего сигнала;

– начальная фаза несущего сигнала.

«Переменная амплитуда» U m (t) пропорциональна управляющему сигналу (сигналу сообщения) U с (t):

, (2.17)

где U m 0 – амплитуда несущего сигнала до амплитудной модуляции, то есть поступающего на модулятор;

– коэффициент пропорциональности.

При модуляции несущего сигнала сигналом сообщения необходимо обеспечить, чтобы U m (t) была величиной положительной. Это требование выполняется выбором коэффициента .

Для исключения влияния переходных процессов в радиоэлектронной цепи модулятора и других цепях преобразования модулированного сигнала на спектр сигнала сообщения необходимо выполнение следующего условия: наивысшая по частоте спектральная составляющая в ограниченном спектре сигнала сообщения должна иметь частоту , – что обеспечивается выбором частоты несущего сигнала.

На рис. 2.10 и 2.11 показаны два примера построения графиков АМ колебаний. На рисунках изображены следующие графики:

а – сигнал сообщения u c (t);

б – несущий сигнал u 0 (t);

в – огибающая амплитуд U m (t);

г – АМ сигнал u(t).

Для понимания образования спектра АМ сигнала рассмотрим простой случай: однотональное амплитудно-модулированное колебание. В этом случае модулирующий сигнал является гармоническим (однотональным):

с амплитудой U mc , частотой и начальной фазой .

Огибающая амплитуд однотонального АМ колебания имеет вид:

где – максимальное приращение амплитуды. Мгновенное значение однотонального АМ колебания

Отношение называется коэффициентом глубины модуляции или просто коэффициентом модуляции . Так как U m (t)> 0, то 0< m< 1. Часто m измеряют в процентах, тогда 0< m< 100%. С учетом введения коэффициента модуляции однотональное модулированное колебание запишем в виде:

Графики, поясняющие процесс однотональной амплитудной модуляции, приведены на рис. 2.12.

Рис. 2.12. Однотональная амплитудная модуляция

Для нахождения спектра однотонального амплитудно-модулированного сигнала необходимо сделать следующие преобразования:

(2.20)

При выводе выражения (2.20) использована тригонометрическая формула

Таким образом, при однотональной амплитудной модуляции несущего сигнала спектр содержит три составляющие: одна на несущей частоте имеет амплитуду U m 0 и две на боковых частотах с амплитудами mU m 0 /2, зависящими от коэффициента модуляции; при m< 1 их амплитуды составляют не более половины амплитуды несущей гармоники. Начальные фазы колебаний боковых спектральных составляющих отличаются от начальной фазы на величину . На рис. 2.13 показаны графики АЧС и ФЧС однотонального амплитудно-модулированного колебания.

Рис. 2.13. Спектр однотонального амплитудно-модулированного колебания

Из анализа спектра следует, что АЧС является четным относительно частоты , а ФЧС нечетным относительно точки с координатами ( , ).

При условии все составляющие спектра являются высокочастотными, следовательно, такой сигнал может эффективно передаваться с помощью ЭМВ.

Рассмотрим энергетические параметры однотонального АМ сигнала. Средняя за период несущего сигнала мощность, выделяемая на единичном сопротивлении,

В отсутствии модуляции эта мощность равна

а при модуляции изменяется в пределах от

.

Если m=100%, то , а P min = 0. Средняя мощность сигнала за период модуляции будет складываться из мощностей спектральных составляющих

В случае m=100% Р ср = 1,5Р 0 .

Перейдем к рассмотрению общего случая к так называемому многотональному АМ сигналу. Модулирующий сигнал, то есть сигнал сообщения, имеет спектр вида (1.22)

.

Огибающая амплитуд имеет вид:

где – максимальное приращение амплитуды n-ой гармоники модулирующего сигнала.

Выражение для многотонального АМ сигнала примет следующий вид:

(2.23)

где – коэффициент модуляции n-ой гармоники модулирующего сигнала. Применяя аналогичные, как это было сделано для однотональной амплитудной модуляции, тригонометрические преобразования, получим

(2.24)

Выражение (2.24) представляет спектр амплитудно-модулированного сигнала. Относительно колебания с частотой имеют место два ряда составляющих с верхними и нижними боковыми частотами. Эти составляющие образуют так называемые верхнюю и нижнюю боковые полосы спектра.

Передать весь спектр АМ сигнала по каналу информации невозможно по следующим причинам. Во-первых, нельзя создать идеальную линейную цепь в области частот , см. п.1.4. Во-вторых, при увеличении полосы пропускания линейной цепи может уменьшиться отношение мощности сигнала к мощности шумов (см. п.1.5). В-третьих, полоса пропускания, по возможности, должна быть минимальной, чтобы в заданном частотном диапазоне работало как можно больше радиолиний (радиоканалов), не влияющих друг на друга, то есть не создающих друг другу помех. Следовательно, спектр сигнал ограничивается частотой , наиболее удаленной от частоты несущего сигнала. На рис. 2.14 приведенный амплитудный спектр АМ сигнала. Ширина спектра определяется максимальной частотой в спектре модулирующего сигнала и составляет 2 . Примерные значения ширины спектра для некоторых АМ сигналов представлены в табл. 1.1.

Общие сведения о модуляции

Модуляция это процесс преобразования одного или нескольких информационных параметров несущего сигнала в соответствии с мгновенными значениями информационного сигнала.

В результате модуляции сигналы переносятся в область более высоких частот.

Использование модуляции позволяет:

  • согласовать параметры сигнала с параметрами линии;
  • повысить помехоустойчивость сигналов;
  • увеличить дальность передачи сигналов;
  • организовать многоканальные системы передачи (МСП с ЧРК).

Модуляция осуществляется в устройствах модуляторах . Условное графическое обозначение модулятора имеет вид:

Рисунок 1 - Условное графическое обозначение модулятора

При модуляции на вход модулятора подаются сигналы:

u(t) — модулирующий , данный сигнал является информационным и низкочастотным (его частоту обозначают W или F);

S(t) — модулируемый (несущий) , данный сигнал является неинформационным и высокочастотным (его частота обозначается w 0 или f 0);

Sм(t) — модулированный сигнал , данный сигнал является информационным и высокочастотным.

В качестве несущего сигнала может использоваться:

  • гармоническое колебание, при этом модуляция называется аналоговой или непрерывной ;
  • периодическая последовательность импульсов, при этом модуляция называется импульсной ;
  • постоянный ток, при этом модуляция называется шумоподобной .

Так как в процессе модуляции изменяются информационные параметры несущего колебания, то название вида модуляции зависит от изменяемого параметра этого колебания.

1. Виды аналоговой модуляции:

  • амплитудная модуляция (АМ), происходит изменение амплитуды несущего колебания;
  • частотная модуляция (ЧМ), происходит изменение частоты несущего колебания;
  • фазовая модуляция (ФМ), происходит изменение фазы несущего колебания.

2. Виды импульсной модуляции:

  • амплитудно-импульсная модуляция (АИМ) , происходит изменение амплитуды импульсов несущего сигнала;
  • частотно-импульсная модуляция (ЧИМ) , происходит изменение частоты следования импульсов несущего сигнала;
  • Фазо-импульсная модуляция (ФИМ) , происходит изменение фазы импульсов несущего сигнала;
  • Широтно-импульсная модуляция (ШИМ) , происходит изменение длительности импульсов несущего сигнала.

Амплитудная модуляция

Амплитудная модуляция — процесс изменения амплитуды несущего сигнала в соответствии с мгновенными значениями модулирующего сигнала.

амплитудно-модулированного (АМ) сигнала при гармоническом модулирующем сигнале. При воздействии модулирующего сигнала

u (t )= Um u sin ? t (1)

на несущее колебание

S (t )= Um sin (? 0 t + ? ) (2)

происходит изменение амплитуды несущего сигнала по закону:

Uам(t)=Um+ а ам Um u sin ? t (3)

где а ам — коэффициент пропорциональности амплитудной модуляции.

Подставив (3) в математическую модель (2) получим:

Sам(t)=(Um+ а ам Um u sin ? t) sin(? 0 t+ ? ). (4)

Вынесем Um за скобки:

Sам(t)=Um(1+ а ам Um u /Um sin ? t) sin (? 0 t+ ? ) (5)

Отношение а ам Um u /Um = m ам называется коэффициентом амплитудной модуляции . Данный коэффициент не должен превышать единицу, т. к. в этом случае появляются искажения огибающей модулированного сигнала называемые перемодуляцией . С учетом m ам математическая модель АМ сигнала при гармоническом модулирующем сигнале будет иметь вид:

Sам(t)=Um(1+m ам sin ? t) sin(? 0 t+ ? ). (6)

Если модулирующий сигнал u(t) является негармоническим, то математическая модель АМ сигнала в этом случае будет иметь вид:

Sам(t)=(Um+ а ам u(t)) sin (? 0 t+ ? ) . (7)

Рассмотрим спектр АМ сигнала для гармонического модулирующего сигнала. Для этого раскроем скобки математической модели модулированного сигнала, т. е. представим его в виде суммы гармонических составляющих.

Sам(t)=Um(1+m ам sin ? t) sin (? 0 t+ ? ) = Um sin (? 0 t+ ? ) +

+m ам Um/2 sin((? 0 ? ) t+ j ) m ам Um/2 sin((? 0 + ? )t+ j ). (8)

Как видно из выражения в спектре АМ сигнала присутствует три составляющих: составляющая несущего сигнала и две составляющих на комбинационных частотах. Причем составляющая на частоте ? 0 —? называется нижней боковой составляющей , а на частоте ? 0 + ? верхней боковой составляющей. Спектральные и временные диаграммы модулирующего, несущего и амплитудно-модулированного сигналов имеют вид (рисунок 2).

Рисунок 2 - Временные и спектральные диаграммы модулирующего (а), несущего (б) и ампдтудно-модулированного (в) сигналов

D? ам =(? 0 + ? ) (? 0 ? )=2 ? (9)

Если же модулирующий сигнал является случайным, то в этом случае в спектре составляющие модулирующего сигнала обозначают символически треугольниками (рисунок 3).

Составляющие в диапазоне частот (? 0 — ? max) ? (? 0 — ? min) образуют нижнюю боковую полосу (НБП), а составляющие в диапазоне частот (? 0 + ? min) ? (? 0 + ? max) образуют верхнюю боковую полосу (ВБП)

Рисунок 3 - Временные и спектральные диаграммы сигналов при случайном модулирующем сигнале

Ширина спектра для данного сигнала будет определятся

D ? ам =(? 0 + ? max ) (? 0 ? min )=2 ? max (10)

На рисунке 4 приведены временные и спектральные диаграммы АМ сигналов при различных индексах m ам. Как видно при m ам =0 модуляция отсутствует, сигнал представляет собой немодулированную несущую, соответственно и спектр этого сигнала имеет только составляющую несущего сигнала (рисунок 4,

Рисунок 4 - Временные и спектральные диаграммы АМ сигналов при различных mам: а) при mам=0, б) при mам=0,5, в) при mам=1, г) при mам>1

а), при индексе модуляции m ам =1 происходит глубокая модуляция, в спектре АМ сигнала амплитуды боковых составляющих равны половине амплитуды составляющей несущего сигнала (рисунок 4в), данный вариант является оптимальным, т. к. энергия в большей степени приходится на информационные составляющие. На практике добиться коэффициента равного едините тяжело, поэтому добиваются соотношения 01 происходит перемодуляция, что, как отмечалось выше, приводит к искажению огибающей АМ сигнала, в спектре такого сигнала амплитуды боковых составляющих превышают половину амплитуды составляющей несущего сигнала (рисунок 4г).

Основными достоинствами амплитудной модуляции являются:

  • узкая ширина спектра АМ сигнала;
  • простота получения модулированных сигналов.

Недостатками этой модуляции являются:

  • низкая помехоустойчивость (т. к. при воздействии помехи на сигнал искажается его форма — огибающая, которая и содержит передаваемое сообщение);
  • неэффективное использование мощности передатчика (т. к. наибольшая часть энергии модулированного сигнала содержится в составляющей несущего сигнала до 64%, а на информационные боковые полосы приходится по 18%).

Амплитудная модуляция нашла широкое применение:

  • в системах телевизионного вещания (для передачи телевизионных сигналов);
  • в системах звукового радиовещания и радиосвязи на длинных и средних волнах;
  • в системе трехпрограммного проводного вещания.

Балансная и однополосная модуляция

Как отмечалось выше, одним из недостатков амплитудной модуляции является наличие составляющей несущего сигнала в спектре модулированного сигнала. Для устранения этого недостатка применяют балансную модуляцию. При балансной модуляции происходит формирование модулированного сигнала без составляющей несущего сигнала. В основном это осуществляется путем использования специальных модуляторов: балансного или кольцевого. Временная диаграмма и спектр балансно-модулированного (БМ) сигнала представлен на рисунке 5.

Рисунок 5 - Временные и спектральные диаграммы модулирующего (а), несущего (б) и балансно-модулированного (в) сигналов

Также особенностью модулированного сигнала является наличие в спектре двух боковых полос несущих одинаковую информацию. Подавление одной из полос позволяет уменьшить спектр модулированного сигнала и, соответственно, увеличить число каналов в линии связи. Модуляция при которой формируется модулированный сигнал с одной боковой полосой (верхней или нижней) называется однополосной. Формирование однополосно-модулированного (ОМ) сигнала осуществляется из БМ сигнала специальными методами, которые рассматриваются ниже. Спектры ОМ сигнала представлены на рисунке 6.

Рисунок 6 - Спектральные диаграммы однополосно-модулированных сигналов: а) с верхней боковой полосой (ВБП), б) с нижней боковой полосой (НБП)

Частотная модуляция

Частотная модуляция — процесс изменения частоты несущего сигнала в соответствии с мгновенными значениями модулирующего сигнала.

Рассмотрим математическую модель частотно-модулированного (ЧМ) сигнала при гармоническом модулирующем сигнале. При воздействии модулирующего сигнала

u (t ) = Um u sin ? t

на несущее колебание

S (t ) = Um sin (? 0 t + ? )

происходит изменение частоты несущего сигнала по закону:

w чм (t) = ? 0 + а чм Um u sin ? t (9)

где а чм — коэффициент пропорциональности частотной модуляции.

Поскольку значение sin ? t может изменятся в диапазоне от -1 до 1, то наибольшее отклонение частоты ЧМ сигнала от частоты несущего сигнала составляет

? ? m = а чм Um u (10)

Величина Dw m называется девиацией частоты. Следовательно, девиация частоты показывает наибольшее отклонение частоты модулированного сигнала от частоты несущего сигнала.

Значение ? чм (t) непосредственно подставить в S(t) нельзя, т. к. аргумент синуса ? t+j является мгновенной фазой сигнала?(t) которая связана с частотой выражением

? = d ? (t )/ dt (11)

Отсюда следует что, чтобы определить? чм (t) необходимо проинтегрировать ? чм (t)

Причем в выражении (12) ? является начальной фазой несущего сигнала.

Отношение

Мчм = ?? m / ? (13)

называется индексом частотной модуляции .

Учитывая (12) и (13) математическая модель ЧМ сигнала при гармоническом модулирующем сигнале будет иметь вид:

S чм (t)=Um sin(? 0 t Мчм cos ? t+ ? ) (14)

Временные диаграммы, поясняющие процесс формирования частотно-модулированного сигнала приведены на рисунке 7. На первых диаграммах а) и б) представлены соответственно несущий и модулирующий сигналы, на рисунке в) представлена диаграмма показывающая закон изменения частоты ЧМ сигнала. На диаграмме г) представлен частогтно-модулированный сигнал соответствующий заданному модулирующему сигналу, как видно из диаграммы любое изменение амплитуды модулирующего сигнала вызывает пропорциональное изменение частоты несущего сигнала.

Рисунок 7 - Формирование ЧМ сигнала

Для построения спектра ЧМ сигнала необходимо разложить его математическую модель на гармонические составляющие. В результате разложения получим

S чм (t)= Um J 0 (M чм ) sin(? 0 t+ ? )

Um J 1 (M чм ) {cos[(? 0 ? )t+ j ]+ cos[(? 0 + ? )t+ ? ]}

Um J 2 (M чм ) {sin[(? 0 2 ? )t+ j ]+ sin[(? 0 +2 ? )t+ ? ]}+

+ Um J 3 (M чм ) {cos[(? 0 — 3 ? )t+ j ]+ cos[(? 0 +3 ? )t+ ? ]}

Um J 4 (M чм ) {sin[(? 0 4 ? )t+ j ]+ sin[(? 0 +4 ? )t+ ? ]} (15)

где J k (Mчм) — коэффициенты пропорциональности.

J k (Mчм) определяются по функциям Бесселя и зависят от индекса частотной модуляции. На рисунке 8 представлен график содержащий восемь функций Бесселя. Для определения амплитуд составляющих спектра ЧМ сигнала необходимо определить значение функций Бесселя для заданного индекса. Причем как

Рисунок 8 - Функции Бесселя

видно из рисунка различные функции имеют начало в различных значениях Мчм, а следовательно, количество составляющих в спектре будет определятся Мчм (с увеличивается индекса увеличивается и количество составляющих спектра). Например необходимо определить коэффициенты J k (Мчм) при Мчм=2. По графику видно, что при заданном индексе можно определить коэффициенты для пяти функций (J 0 , J 1 , J 2 , J 3 , J 4) Их значение при заданном индексе будет равно: J 0 =0,21; J 1 =0,58; J 2 =0,36; J 3 =0,12; J 4 =0,02. Все остальные функции начинаются после значения Мчм=2 и равны, соответственно, нулю. Для приведенного примера количество составляющих в спектре ЧМ сигнала будет равно 9: одна составляющая несущего сигнала (Um J 0) и по четыре составляющих в каждой боковой полосе (Um J 1 ; Um J 2 ; Um J 3 ; Um J 4).

Еще одной важной особенностью спектра ЧМ сигнала является то, что можно добиться отсутствия составляющей несущего сигнала или сделать ее амплитуду значительно меньше амплитуд информационных составляющих без дополнительных технических усложнений модулятора. Для этого необходимо подобрать такой индекс модуляции Мчм, при котором J 0 (Мчм) будет равно нулю (в месте пересечения функции J 0 с осью Мчм), например Мчм=2,4.

Поскольку увеличение составляющих приводит к увеличению ширины спектра ЧМ сигнала, то значит, ширина спектра зависит от Мчм (рисунок 9). Как видно из рисунка, при Мчм?0,5 ширина спектра ЧМ сигнала соответствует ширине спектра АМ сигнала и в этом случае частотная модуляция является узкополосной , при увеличении Мчм ширина спектра увеличивается, и модуляция в этом случае является широкополосной . Для ЧМ сигнала ширина спектра определяется

D ? чм =2(1+Мчм) ? (16)

Достоинством частотной модуляции являются:

  • высокая помехоустойчивость;
  • более эффективное использование мощности передатчика;
  • сравнительная простота получения модулированных сигналов.

Основным недостатком данной модуляции является большая ширина спектра модулированного сигнала.

Частотная модуляция используется:

  • в системах телевизионного вещания (для передачи сигналов звукового сопровождения);
  • системах спутникового теле- и радиовещания;
  • системах высококачественного стереофонического вещания (FM диапазон);
  • радиорелейных линиях (РРЛ);
  • сотовой телефонной связи.

Рисунок 9 - Спектры ЧМ сигнала при гармоническом модулирующем сигнале и при различных индексах Мчм: а) при Мчм=0,5, б) при Мчм=1, в) при Мчм=5

Фазовая модуляция

Фазовая модуляция — процесс изменения фазы несущего сигнала в соответствии с мгновенными значениями модулирующего сигнала.

Рассмотрим математическую модель фазо-модулированного (ФМ) сигнала при гармоническом модулирующем сигнале. При воздействии модулирующего сигнала

u (t ) = Um u sin ? t

на несущее колебание

S (t ) = Um sin (? 0 t + ? )

происходит изменение мгновенной фазы несущего сигнала по закону:

? фм(t) = ? 0 t+ ? + а фм Um u sin ? t (17)

где а фм — коэффициент пропорциональности частотной модуляции.

Подставляя ? фм(t) в S(t) получаем математическую модель ФМ сигнала при гармоническом модулирующем сигнале:

Sфм(t) = Um sin(? 0 t+ а фм Um u sin ? t+ ? ) (18)

Произведение а фм Um u =Dj m называется индексом фазовой модуляции или девиацией фазы .

Поскольку изменение фазы вызывает изменение частоты, то используя (11) определяем закон изменения частоты ФМ сигнала:

? фм (t )= d ? фм(t )/ dt = w 0 +а фм Um u ? cos ? t (19)

Произведение а фм Um u ? =?? m является девиацией частоты фазовой модуляции. Сравнивая девиацию частоты при частотной и фазовой модуляциях можно сделать вывод, что и при ЧМ и при ФМ девиация частоты зависит от коэффициента пропорциональности и амплитуды модулирующего сигнала, но при ФМ девиация частоты также зависит и от частоты модулирующего сигнала.

Временные диаграммы поясняющие процесс формирования ФМ сигнала приведены на рисунке 10.

При разложении математической модели ФМ сигнала на гармонические составляющие получится такой же ряд, как и при частотной модуляции (15), с той лишь разницей, что коэффициенты J k будут зависеть от индекса фазовой модуляции? ? m (J k (? ? m)). Определятся эти коэффициенты будут аналогично, как и при ЧМ, т. е. по функциям Бесселя, с той лишь разницей, что по оси абсцисс необходимо заменить Мчм на? ? m . Поскольку спектр ФМ сигнала строится аналогично спектру ЧМ сигнала, то для него характерны те же выводы что и для ЧМ сигнала (пункт 1.4).

Рисунок 10 - Формирование ФМ сигнала

Ширина спектра ФМ сигнала определяется выражением:

? ? фм =2(1+ ? j m ) ? (20).

Достоинствами фазовой модуляции являются:

  • высокая помехоустойчивость;
  • более эффективное использование мощности передатчика.
  • недостатками фазовой модуляции являются:
  • большая ширина спектра;
  • сравнительная трудность получения модулированных сигналов и их детектирование

Дискретная двоичная модуляция (манипуляция гармонической несущей)

Дискретная двоичная модуляция (манипуляция) — частный случай аналоговой модуляции, при которой в качестве несущего сигнала используется гармоническая несущая, а в качестве модулирующего сигнала используется дискретный, двоичный сигнал.

Различают четыре вида манипуляции:

  • амплитудную манипуляцию (АМн или АМТ);
  • частотную манипуляцию (ЧМн или ЧМТ);
  • фазовую манипуляцию (ФМн или ФМТ);
  • относительно-фазовую манипуляцию (ОФМн или ОФМ).

Временные и спектральные диаграммы модулированных сигналов при различных видах манипуляции представлены на рисунке 11.

При амплитудной манипуляции , также как и при любом другом модулирующем сигнале огибающая S АМн (t) повторяет форму модулирующего сигнала (рисунок 11, в).

При частотной манипуляции используются две частоты? 1 и? 2 . При наличии импульса в модулирующем сигнале (посылке) используется более высокая частота? 2 , при отсутствии импульса (активной паузе) используется более низкая частота w 1 соответствующая немодулированной несущей (рисунок 11, г)). Спектр частотно-манипулированного сигнала S ЧМн (t) имеет две полосы возле частот? 1 и? 2 .

При фазовой манипуляции фаза несущего сигнала изменяется на 180° в момент изменения амплитуды модулирующего сигнала. Если следует серия из нескольких импульсов, то фаза несущего сигнала на этом интервале не изменяется (рисунок 11, д).

Рисунок 11 - Временные и спектральные диаграммы модулированных сигналов различных видов дискретной двоичной модуляции

При относительно-фазовой манипуляции фаза несущего сигнала изменяется на 180° лишь в момент подачи импульса, т. е. при переходе от активной паузы к посылке (0?1) или от посылке к посылке (1?1). При уменьшении амплитуды модулирующего сигнала фаза несущего сигнала не изменяется (рисунок 11, е). Спектры сигналов при ФМн и ОФМн имеют одинаковый вид (рисунок 9, е).

Сравнивая спектры всех модулированных сигналов можно отметить, что наибольшую ширину имеет спектр ЧМн сигнала, наименьшую — АМн, ФМн, ОФМн, но в спектрах ФМн и ОФМн сигналов отсутствует составляющая несущего сигнала.

В виду большей помехоустойчивости наибольшее распространение получили частотная, фазовая и относительно-фазовая манипуляции. Различные их виды используются в телеграфии, при передаче данных, в системах подвижной радиосвязи (телефонной, транкинговой, пейджинговой).

Импульсная модуляция

Импульсная модуляция — это модуляция, при которой в качестве несущего сигнала используется периодическая последовательность импульсов, а в качестве модулирующего может использоваться аналоговый или дискретный сигнал.

Поскольку периодическая последовательность характеризуется четырьмя информационными параметрами (амплитудой, частотой, фазой и длительностью импульса), то различают четыре основных вида импульсной модуляции:

  • амплитудно-импульсная модуляция (АИМ); происходит изменение амплитуды импульсов несущего сигнала;
  • частотно-импульсная модуляция (ЧИМ), происходит изменение частоты следования импульсов несущего сигнала;
  • фазо-импульсная модуляция (ФИМ), происходит изменение фазы импульсов несущего сигнала;
  • широтно-импульсная модуляция (ШИМ), происходит изменение длительности импульсов несущего сигнала.

Временные диаграммы импульсно-модулированных сигналов представлены на рисунке 12.

При АИМ происходит изменение амплитуды несущего сигнала S(t) в соответствии с мгновенными значениями модулирующего сигнала u(t), т. е. огибающая импульсов повторяет форму модулирующего сигнала (рисунок 12, в).

При ШИМ происходит изменение длительности импульсов S(t) в соответствии с мгновенными значениями u(t) (рисунок 12, г).

Рисунок 12 - Временные диаграммы сигналов при импульсной модуляции

При ЧИМ происходит изменение периода, а соответственно и частоты, несущего сигнала S(t) в соответствии с мгновенными значениями u(t) (рисунок 12, д).

При ФИМ происходит смещение импульсов несущего сигнала относительно их тактового (временного) положения в немодулированной несущей (тактовые моменты обозначены на диаграммах точками Т, 2Т, 3Т и т. д.). ФИМ сигнал представлен на рисунке 12, е.

Поскольку при импульсной модуляции переносчиком сообщения является периодическая последовательность импульсов, то спектр импульсно-модулированных сигналов является дискретным и содержит множество спектральных составляющих. Этот спектр представляет собой спектр периодической последовательности импульсов в котором возле каждой гармонической составляющей несущего сигнала находятся составляющие модулирующего сигнала (рисунок 13). Структура боковых полос возле каждой составляющей несущего сигнала зависит от вида модуляции.

Рисунок 13 - Спектр импульсно-модулированного сигнала

Также важной особенностью спектра импульсно-модулированных сигналов является то, что ширина спектра модулированного сигнала, кроме ШИМ, не зависит от модулирующего сигнала. Она полностью определяется длительностью импульса несущего сигнала. Поскольку при ШИМ длительность импульса изменяется и зависит от модулирующего сигнала, то при этом виде модуляции и ширина спектра также зависти от модулирующего сигнала.

Частоту следования импульсов несущего сигнала может быть определена по теореме В. А. Котельникова как f 0 =2Fmax. При этом Fmax это верхняя частота спектра модулирующего сигнала.

Передача импульсно модулированных сигналов по высокочастотным линиям связи невозможна, т. к. спектр этих сигналов содержит низкочастотные составляющий. Поэтому для передачи осуществляют повторную модуляцию . Это модуляция, при которой в качестве модулирующего сигнала используют импульсно-модулированный сигнал, а в качестве несущего гармоническое колебание. При повторной модуляции спектр импульсно-модулированного сигнала переносится в область несущей частоты. Для повторной модуляции может использоваться любой из видов аналоговой модуляции: АМ, ЧС, ФМ. Полученная модуляция обозначается двумя аббревиатурами: первая указывает на вид импульсной модуляции а вторая — на вид аналоговой модуляции, например АИМ-АМ (рисунок 14, а) или ШИМ-ФМ (рисунок 14, б) и т. д.

Рисунок 14 - Временные диаграммы сигналов при импульсной повторной модуляции

ВВЕДЕНИЕ

Курсовая работа выполняется с целью закрепления пройденного материала по амплитудной модуляции сигналов, а также для углубления знаний по данной проблеме. В работе необходимо дать определение амплитудной модуляции, раскрыть её сущность, описать основные формы. После этого преступить к рассмотрению алгоритмов задания данного вида модуляции. Затем написать программу, демонстрирующую наглядное представление амплитудной модуляции сигналов. Полученные сигналы необходимо оцифровать и вывести результаты на экран. Программирование будет выполняться в Microsoft Visual Studio 2010 в Win Forms на языке C#. В конце работы сформулировать выводы.

Амплитудная модуляция

Понятие и сущность амплитудной модуляции

Амплитудная модуляция - вид модуляции, при которой изменяемым параметром несущего сигнала является его амплитуда.

Первый опыт передачи речи и музыки по радио методом амплитудной модуляции произвёл в 1906 году американский инженер Р. Фессенден. Несущая частота 50 кГц радиопередатчика вырабатывалась машинным генератором (альтернатором), для её модуляции между генератором и антенной включался угольный микрофон, изменяющий затухание сигнала в цепи. С 1920 года вместо альтернаторов стали использоваться генераторы на электронных лампах. Во второй половине 1930-х годов, по мере освоения ультракоротких волн, амплитудная модуляция постепенно начала вытесняться из радиовещания и радиосвязи на УКВ частотной модуляцией. С середины XX века в служебной и любительской радиосвязи на всех частотах внедряется модуляция с одной боковой полосой (ОБП), которая имеет ряд важных преимуществ перед АМ. Поднимался вопрос о переводе на ОБП и радиовещания, однако это потребовало бы замены всех радиовещательных приёмников на более сложные и дорогие, поэтому не было осуществлено. В конце XX века начался переход к цифровому радиовещанию с использованием сигналов с амплитудной манипуляцией.

Определение

Информационный сигнал,

Несущее колебание.

Тогда амплитудно-модулированный сигнал может быть записан следующим образом:

Здесь -- некоторая константа, называемая коэффициентом модуляции. Формула (1) описывает несущий сигнал, модулированный по амплитуде сигналом с коэффициентом модуляции. Предполагается также, что выполнены условия:

Выполнение условий (2) необходимо для того, чтобы выражение в квадратных скобках в (1) всегда было положительным. Если оно может принимать отрицательные значения в какой-то момент времени, то происходит так называемая перемодуляция (избыточная модуляция). Простые демодуляторы (типа квадратичного детектора) демодулируют такой сигнал с сильными искажениями.

Амплитудно-модулированные колебания и их спектры

Пусть гармоническое колебание используется в качестве несущего, а модулирующий сигнал является гармоническим (однотональным) колебанием и выполняется условие. Тогда AM-колебание называется однотональным. При имеем:

где - коэффициент амплитудной модуляции.

Спектральный состав сигнала можно получить, представляя произведение функций (1) в виду суммы гармонических колебаний. Тогда

Спектр однотонального AM колебания линейчатый эквидистантный. Он состоит из трех гармонических колебаний с близкими частотами.


Рисунок 1 - Спектр однотонального AM колебания

Амплитудная модуляция гармонического колебания произвольным сигналом, обладающим сплошным спектром в области низких частот, сопровождается формированием в окрестности несущего колебания двух групп боковых колебаний (Рисунок 1). Верхняя группа колебаний (от () до ()) является точной копией спектра модулирующего сигнала, сдвинутой в область радиочастот, а нижняя группа колебаний представляется зеркальное отражение спектра модулирующего сигнала относительно, а также смещенное в область радиочастот. Колебания с комбинационными частотами () и () располагаются попарно-симметрично относительно частоты несущего колебания. Полная ширина спектра AM-процесса равняется удвоенной ширине спектра модулирующего сигнала.

Частным случаем многотонального AM-сигнала является высокочастотное колебание, промодулированное по амплитуде последовательностью прямоугольных импульсов.

Амплитудная модуляция как нелинейный процесс

При амплитудной модуляции сигналов происходит перемножение двух функций: высокочастотного колебания с частотой и модулирующего гармонического или полигармонического сигнала. Эту процедуру можно осуществить в нелинейной системе при задании на вход суммы несущего и модулирующего сигналов и выделении на выходе их произведения. Спектр выходного сигнала содержит составляющие с частотами, отсутствовавшими у исходных колебаний. Количество и частоты новых составляющих зависят от вида нелинейного элемента и его вольт-амперной характеристики (ВАХ).

ВАХ нелинейных элементов (НЭ), получаемые экспериментально и представляемые в виде графиков или таблиц, неудобно использовать в расчетах, и для теоритического анализа их аппроксимируют аналитическими функциями. Наибольшее распространение в радиоэлектронике получили аппроксимации степенным многочленом и ломаной линией.

Как сравнить различные методы модуляции с точки зрения производительности и применений? Давайте посмотрим.

Важно понимать основные характеристики трех типов радиочастотной модуляции. Но эта информация не существует изолировано - цель заключается в разработке реальных систем, которые эффективно отвечают требованиям производительности. Таким образом, мы должны иметь общее представление о том, какой метод модуляции подходит для конкретного приложения.

Амплитудная модуляция

Амплитудная модуляция проста в плане реализации и анализа. Кроме того, AM сигналы довольно легко демодулировать. В целом, тогда AM можно рассматривать как простую, недорогую схему модуляции. Однако, как обычно, простота и низкая стоимость сопровождаются компромиссами в производительности - мы никогда не ожидаем, что более простое и дешевое решение будет самым лучшим.

Возможно, я буду неточным, если опишу AM системы как «редкие», поскольку AM приемники присутствуют на бесчисленных транспортных средствах. Однако применения аналоговой амплитудной модуляции в настоящее время весьма ограничены, поскольку AM имеет два существенных недостатка.

Амплитудный шум

Шум - это постоянная проблема в беспроводных системах связи. В определенном смысле качество радиочастотного проекта можно суммировать по отношению сигнал/шум демодулированного сигнала: меньше шума в принятом сигнале означает более высокое качество (для аналоговых систем) или меньшее количество битовых ошибок (для цифровых систем). Шум присутствует всегда, и мы всегда должны признавать в нем основную угрозу для производительности системы.

Шум - случайный электрический шум, помехи, электрические и механические переходные процессы - воздействует на уровень сигнала. Другими словами, шум может создавать амплитудную модуляцию. И это является проблемой, поскольку случайную амплитудную модуляцию, возникающую из-за шума, нельзя отличить от преднамеренной амплитудной модуляции, выполняемой передатчиком. Шум является проблемой для любого радиосигнала, но AM системы особенно восприимчивы.

Линейность усилителя

Одной из основных проблем в разработке радиочастотных усилителей мощности является линейность (более конкретно, трудно добиться и высокой эффективности, и высокой линейности одновременно). Линейный усилитель применяет к входному сигналу определенный фиксированный коэффициент усиления; графически это выглядит так: передаточная функция линейного усилителя представляет собой просто прямую линию с наклоном, соответствующим коэффициенту усиления.


Прямая линия представляет собой отклик идеального линейного усилителя: выходное напряжение всегда равно входному напряжению, умноженному на фиксированный коэффициент усиления

У реальных усилителей всегда есть некоторая степень нелинейности, что означает, что на усиление, применяемое к входному сигналу, влияют характеристики входного сигнала. Результатом нелинейного усиления являются искажения, т.е. создание энергии на частотах гармоник.

Любая схема модуляции, которая включает в себя изменения амплитуды, более восприимчива к влиянию нелинейности. Это включает в себя как обычную аналоговую амплитудную модуляцию, так и широко используемые цифровые схемы, известные в совокупности как квадратурная амплитудная модуляция (QAM).

Угловая модуляция

Частотная и фазовая модуляции кодируют информацию во временны́х характеристиках передаваемого сигнала и, следовательно, устойчивы к амплитудному шуму и нелинейности усилителя. Частота сигнала не может быть изменена шумом или искажением. Могут быть добавлены дополнительные частотные составляющие, но исходная частота всё равно будет присутствовать. Разумеется, шум оказывает негативное влияние на FM и PM системы, но шум напрямую не искажает характеристики сигнала, которые использовались для кодирования низкочастотных данных.

Как упоминалось выше, разработка усилителя мощности включает в себя компромисс между эффективностью и линейностью. Угловая модуляция совместима с низколинейными усилителями, и эти низколинейные усилители более эффективны с точки зрения энергопотребления. Таким образом, угловая модуляция является хорошим выбором для маломощных радиочастотных систем.

Ширина полосы частот

Эффекты в частотной области от амплитудной модуляции более просты, чем от частотной и фазовой модуляций. Это можно считать преимуществом AM: важно иметь возможность прогнозировать ширину полосы частот, занимаемую модулированным сигналом.

Однако сложность прогнозирования спектральных характеристик FM и PM актуальна больше для теоретической части проектирования. Если мы сосредоточимся на практических соображениях, угловая модуляция может считаться выгодной, поскольку она может преобразовывать заданную ширину полосы частот низкочастотного сигнала в несколько меньшую (по сравнению с AM) ширину полосы частот передаваемого сигнала.

Частота против фазы

Частотная и фазовая модуляции тесно связаны; тем не менее, есть ситуации, когда одна из них лучше другой. Различия между ними более выражены при цифровой модуляции.

Аналоговые частотная и фазовая модуляции

Как мы видели в статье про фазовую модуляцию , когда низкочастотный модулирующий сигнал является синусоидой, PM сигнал представляет собой просто сдвинутую версию соответствующего FM сигнала. Поэтому неудивительно, что ни у FM, ни у PM нет никаких серьезных плюсов или минусов, связанных со спектральными характеристиками или восприимчивостью к помехам.

Однако аналоговая частотная модуляция гораздо более распространена, чем аналоговая фазовая модуляция, и причина в том, что схемотехника FM модуляции и демодуляции более проста. Например, частотная модуляция может быть реализована чем-то простым, таким как генератор, построенный с использованием катушки индуктивности и конденсатора, управляемого напряжением (т.е. конденсатора, который изменяет свою емкость в зависимости от напряжения низкочастотного модулирующего сигнала).

Цифровые частотная и фазовая модуляции

Различия между PM и FM становятся весьма значительными, когда мы входим в область цифровой модуляции. При первом рассмотрении - это частота битовых ошибок. Очевидно, что частота битовых ошибок любой системы будет зависеть от разных факторов, но если мы математически сравниваем двоичную PSK систему с эквивалентной двоичной FSK системой, мы обнаружим, что для двоичной FSK требуется передавать значительно больше энергии для достижения той же частоты битовых ошибок. Это является преимуществом цифровой фазовой модуляции.

Но обычная цифровая фазовая модуляция также имеет два существенных недостатка:

  • Как обсуждалось в статье про цифровую фазовую модуляцию , обычная (то есть недифференциальная) PSK несовместима с некогерентными приемниками. FSK, напротив, не требует когерентного детектирования.
  • Обычные схемы PSK, особенно QPSK, включают в себя резкие изменения фазы, которые приводят к резким изменениям амплитуды модулированного сигнала, а участки с высоким наклоном формы сигнала уменьшаются по амплитуде, когда сигнал обрабатывается фильтром нижних частот. Эти изменения амплитуды в сочетании с нелинейным усилением приводят к проблеме, называемой внеполосным излучением. Чтобы уменьшить внеполосное излучение, мы можем использовать более линейный (и, следовательно, менее эффективный) усилитель мощности или реализовать специализированную версию PSK. Или мы можем перейти на FSK, которая не требует резких изменений фазы.

Резюме

  • Амплитудная модуляция проста, но она очень чувствительна к шуму и требует высоколинейного усилителя мощности.
  • Частотная модуляция менее восприимчива к амплитудному шуму и может использоваться с более высокоэффективными усилителями с более низкой линейностью.
  • Цифровая фазовая модуляция обеспечивает лучшую теоретическую производительность с точки зрения частоты битовых ошибок, чем цифровая частотная модуляция, но цифровая FM более выгодна в маломощных системах, поскольку не требует усилителя с высокой линейностью.
Похожие публикации