Базы данных. основные объекты бд. субд. Постреляционные субд. объектные субд. недостатки реляционных субд. основные концепции объектно-ориентированных субд

Функции СУБД.

Функции СУБД бывают высокого и низкого уровня.

Функции высокого уровня:

1. Определение данных – с помощью этой функции определяется какая информация будет храниться в БД (тип, свойства данных и как они между собой будут связаны).

2. Обработка данных. Информация может обрабатываться разными способами: выборка, фильтрация, сортировка, объединение одной информации с другой, вычисление итоговых значений.

3. Управление данными . С помощью этой функции указывается, кому разрешено знакомиться с данными, корректировать их или добавлять новую информацию, а также определять правила коллективного доступа.

Функции низкого уровня:

1. Управление данными во внешней памяти;

2. Управление буферами оперативной памяти;

3. Управление транзакциями;

4. Введение журнала изменений в БД;

5. Обеспечение целостности и безопасности БД.

Транзакцией называется неделимая последовательность операций, которая отслеживается СУБД от начала и до завершения, и в которой при невыполнении одной операции отменяется вся последовательность.

Журнал СУБД – особая БД или часть основной БД, недоступная пользователю и используемая для записи информации обо всех изменениях базы данных.

Введение журнала СУБД предназначено для обеспечения надёжности хранения в базе данных при наличии аппаратных сбоев и отказов, а так же ошибок в программном обеспечении.

Целостность базы данных – это свойство БД, означающее, что в ней содержится полная, непротиворечивая и адекватно отражающая предметную область информация.

Классификация СУБД.

СУБД можно классифицировать:

1. По видам программ:

a. Серверы БД (например, MS SQL Server, InterBase (Borland)) – предназначены для организации центров обработки данных в сетях ЭВМ и реализуют функции управления базами данных, запрашиваемые клиентскими программами с помощью операторов SQL (т.е. программы, которые отвечают на запросы);

b. Клиенты БД – программы, которые запрашивают данные. В качестве клиентских программ могут использоваться ПФСУБД, электронные таблицы, текстовые процессоры, программы электронной почты;

c. Полнофункциональные БД (MS Access, MS Fox Pro) – программа, имеющая развитый интерфейс, позволяющий создавать и модифицировать таблицы, вводить данные, создавать и форматировать запросы, разрабатывать отчёты и выводить их на печать.

2. По модели данных СУБД (как и БД):

a. Иерархические – основаны на древовидной структуре хранения информации и напоминают файловую систему компьютера; основной недостаток - невозможность реализовать отношение многие - ко – многим;

b. Сетевые – которые пришли на смену иерархическим и просуществовали недолго т. к. основной недостаток – сложность разработки серьёзных приложений. Основное отличие сетевой от иерархической в том, что в иерархической структура «запись – потомок» имеет только одного предка, а в сетевой потомок может иметь любое количество предков;

c. Реляционные – данные которых размещены в таблицах, между которыми существуют определённые связи;

d. Объектно – ориентированные – в них данные хранятся в виде объектов и основное преимущество при работе с ними в том, что к ним можно применить объектно – ориентированный подход;

e. Гибридные, т. е. объектно – реляционные – совмещают в себе возможности реляционных и объектно – ориентированных баз данных. Примером такой базы данных является Oracle (ранее она была реляционной).

3. В зависимости от расположения отдельных частей СУБД различают:

a. локальные – все части которой располагаются на одном компьютере;

b. сетевые.

К сетевым относятся:

- с организацией файл – сервер ;

При такой организации все данные находятся на одном компьютере, который называется файл – сервер, и который подключён к сети. При отыскании нужной информации передаётся весь файл, содержащий в том числе и много избыточной информации. И лишь при создании локальной копии отыскивается нужная запись.

- с организацией клиент – сервер;

Сервер БД принимает запрос от клиента, отыскивает в данных нужную запись и передаёт её клиенту. Запрос к серверу формируется на языке структурированных запросов SQL, поэтому серверы БД называют SQL – серверами.

- распределённые СУБД содержат несколько десятков и сотен серверов, размещённых на значительной территории.

Основные положения реляционной модели БД.

Реляционной базой данных называется такая база данных, в которой все данные организованы в виде таблиц, а все операции над этими данными сводятся к операциям над таблицами.

Особенности реляционных баз данных:

1. Данные хранятся в таблицах, состоящих из столбцов и строк;

2. На пересечении каждого столбца и строки находится одно значение;

3. У каждого столбца - поля есть своё имя, которое служит его названием - атрибут, и все значения в одном столбце, имеют один тип;

4. Столбцы располагаются в определённом порядке, который задаётся при создании таблицы, в отличие от строк, которые располагаются в произвольном порядке. В таблице может не быть ни одной строчки, но обязательно должен быть хотя бы один столбец.

Терминология реляционной базы данных:

Элемент реляционной БД Форма представления
1. База данных Набор таблиц
2. Схема базы данных Набор заголовков таблиц
3. Отношение Таблица
4. Схема отношения Строка заголовков столбцов таблицы
5. Сущность Описание свойств объекта
6. Атрибут Заголовок столбца
7. Домен Множество допустимых значений атрибута
8. Первичный ключ Уникальный идентификатор, однозначно определяющий каждую запись в таблице
9. Тип данных Тип значений элементов в таблице
10. Кортеж Строка (запись)
11. Кардинальность Количество строк в таблице
12. Степень отношения Количество полей
13. Тело отношения Множество кортежей отношения

При проектировании реляционной БД данные размещают в нескольких таблицах. Между таблицами устанавливают связи с помощью ключей. При связывании таблиц выделяют основную и дополнительную (подчинённую) таблицу.

Существуют следующие виды связей между таблицами:

1. Связь вида 1:1 (один к одному) означает, что каждой записи в основной таблице соответствует одна запись в дополнительной таблице и, наоборот, каждой записи в дополнительной таблице соответствует одна запись в основной таблице.

2. Связь вида 1:М (один ко многим) означает, что каждой записи в основной таблице соответствует несколько записей в дополнительной таблице и, наоборот, каждой записи в дополнительной таблице соответствует только одна запись в основной таблице.

3. Связь вида М:1 (многим к одному) означает, что одной или нескольким записям в основной таблице соответствует только одна запись в дополнительной таблице.

4. Связь вида М:М (многим ко многим) – это, когда нескольким записям основной таблицы соответствует несколько записей дополнительной и наоборот.

5. Основные компоненты MS Access.

Основными компонентами (объектами) MS Access являются:

1. Таблицы;

3. Формы;

4. Отчёты;

5. Макросы:

Модули.

Таблица – это объект, предназначенный для хранения данных в виде записей (строк) и полей (столбцов). Каждое поле содержит отдельную часть записи, а каждая таблица используется для хранения сведений по одному конкретному вопросу.

Запрос – вопрос о данных, хранящихся в таблицах, или инструкция на отбор записей, подлежащих изменению.

Форма – это объект, в котором можно разместить элементы управления, предназначенные для ввода, изображения и изменения данных в полях таблицах.

Отчёт – это объект, который позволяет представить определённую пользователем информацию в определённом виде, просматривать и распечатывать её.

Макрос – одна или несколько макрокоманд, которые можно использовать для автоматизации конкретной задачи. Макрокоманда – основной строительный блок макроса; самостоятельная инструкция, которая может быть объединена с другими макрокомандами, чтобы автоматизировать выполнение задачи.

Модуль – набор описаний, инструкций и процедур, сохранённых под одним именем. В MS Access имеется три вида модулей:модуль формы, отчёта и общий модуль. Модули формы и отчётов содержат локальную программу для форм и отчётов.

6. Таблицы в MS Access.

В MS Access существуют следующие методы создания таблиц:

1. Режим таблицы;

2. Конструктор;

3. Мастер таблиц;

4. Импорт таблиц;

5. Связь с таблицами.

В режиме таблицы данные вводятся в пустую таблицу. Для ввода данных предоставляется таблица с 30 полями. После её сохранения MS Access сам решает, какой тип данных присвоить каждому полю.

Конструктор предоставляет возможность самостоятельно создавать поля, выбирать типы данных для полей, размеры полей и устанавливать свойства полей.

Для определения поля в режиме Конструктор задаются:

1. Имя поля , которое в каждой таблице должно иметь уникальное имя, являющееся комбинацией букв, цифр, пробелов и специальных символов, за исключением «.!” “ ». Максимальная длина имени 64 символа.

2. Тип данных определяет вид и диапазон допустимых значений, а также объём памяти, выделенный для этого поля.

Типы данных MS Access

Тип данных Описание
Текстовый Текст и числа, например, имена и адреса, номера телефонов, почтовые индексы (до 255 символов).
Поле Memo Длинный текст и числа, например комментарии и пояснения (до 64000 символов).
Числовой Общий тип данных для числовых данных, допускающих проведение математических расчётов, за исключением денежных расчётов.
Дата / время Значения даты и времени. Пользователь может выбирать стандартные формы или создавать специальный формат.
Денежный Денежные значения. Для денежных расчётов не рекомендуется использовать числовые типы данных, т.к. они могут округляться при расчётах. Значения типа «денежный» всегда выводятся с указанным числом десятичных знаков после запятой.
Счётчик Автоматически выставляющиеся последовательные номера. Нумерация начинается с 1. Поле счётчика удобно для создания ключа. Это поле является совместимым с полем числового типа, для которого в свойстве Размер указано значение «Длинное целое».
Логический Значения «Да / Нет», «Истинно / Ложь», «Вкл / Выкл», одно из двух возможных значений.
Поле объекта OLE Объекты, созданные в других программах, поддерживающие протокол OLE.

3. Наиболее важные свойства полей:

- Размер поля задаёт максимальный размер данных, сохраняемых в поле.

- Формат поля является форматом отображения заданного типа данных и задаёт правила представления данных при выводе их на экран или печать.

- Подпись поля задаёт текст, который выводится в таблицах, формах, отчётах.

- Условие на значение позволяет осуществлять контроль ввода, задаёт ограничения на вводимые значения, при нарушении условий запрещает ввод и выводит текст, заданный свойством Сообщение об ошибке;

- Сообщение об ошибке задаёт текст сообщения, выводимый на экран при нарушении ограничений, заданных Условием на значение.

Тип элемента управления – свойство, которое задаётся на закладке Подстановка в окне конструктора таблиц. Это свойство определяет, будет ли отображаться поле в таблице и в какой форме – в виде поля или поля со списком.

Уникальный (первичный) ключ таблицы может быть простым или составным, включающим несколько полей.

Для определения ключа выделяются поля, составляющие ключ, и на панели инструментов нажимается кнопка ключевое поле или выполняется команда Правка / ключевое поле .


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-16

логической модели реляционной базы данных в объекты реляционной базы данных. Для решения этой задачи проектировщику базы данных необходимо знать: а) какими объектами располагает реляционная база данных в принципе; б) какие объекты поддерживает конкретная СУБД, которая выбрана для реализации базы данных.

Таким образом, мы предполагаем, что решение о выборе СУБД уже принято руководителем ИТ-проекта, и согласовано с заказчиком базы данных, т.е. СУБД задана. Проектировщик базы данных должен ознакомиться с документацией, в которой описан диалект SQL, поддерживаемый выбранной СУБД. В настоящей лекции предполагается, что была выбрана СУБД Oracle 9i, хотя подавляющая часть материала охватывает объекты в любой промышленной реляционной СУБД.

Замечание. О выборе СУБД. Выбор СУБД относится к многокритериальной задаче выбора и в настоящем курсе не рассматривается. Следует помнить о том, что СУБД обычно поддерживает только одну модель данных: реляционную, иерархическую, сетевую, многомерную, объектно-ориентированную, объектно-реляционную. Исключение составляют небольшое число СУБД. Например, ADABAS, Software AG (сетевая и реляционная модели), или Oracle 9i, Oracle Inc. (реляционная и объектно-реляционная модели). Обычно при выборе СУБД при всех прочих равных возможностях стараются создать базу данных на СУБД, претендующей на промышленный стандарт.

Иерархия объектов реляционной базы данных прописана в стандартах по SQL, в частности, в стандарте SQL-92 , на который мы будем ориентироваться при изложении материала настоящей лекции. Этот стандарт поддерживается практически всеми современными СУБД, вплоть до настольных. Иерархия объектов реляционной базы данных показана на рисунке ниже.

На самом нижнем уровне находятся наименьшие объекты, с которыми работает реляционная база данных, - столбцы (колонки) и строки. Они, в свою очередь, группируются в таблицы и представления.

Замечание. В контексте лекции атрибуты, колонки, столбцы и поля считаются синонимами. То же относится и к терминам "строка", "запись" и "кортеж".

Таблицы и представления, которые представляют физическое отражение логической структуры базы данных, собираются в схему. Несколько схем собираются в каталоги, которые затем могут быть сгруппированы в кластеры. Следует отметить, что ни одна из групп объектов стандарта SQL-92 не связана со структурами физического хранения информации в памяти компьютеров.


Рис. 8.1.

Помимо указанных на рисунке объектов, в реляционной базе данных могут быть созданы индексы, триггеры, события, хранимые команды, хранимые процедуры и ряд других. Теперь перейдем к определению объектов реляционной базы данных.

Основные объекты реляционной базы данных

Кластеры, каталоги и схемы не являются обязательными элементами стандарта и, следовательно, программной среды реляционных баз данных.

Под кластером понимается группа каталогов, к которым можно обращаться через одно соединение с сервером базы данных (программная компонента СУБД).

На практике процедура создания каталога определяется реализацией СУБД на конкретной операционной платформе. Под каталогом понимается группа схем. На практике каталог часто ассоциируется с физической базой данных как набором физических файлов операционной системы, которые идентифицируются ее именем.

Для проектировщика базы данных схема - это общее логическое представление отношений законченной базы данных. С точки зрения SQL, схема - это контейнер для таблиц, представлений и других структурных элементов реляционной базы данных. Принцип размещения элементов базы данных в каждой схеме полностью определяется проектировщиком базы данных.

Для создания таблиц и представлений наличие схемы не обязательно. Если у вас планируется инсталляция только одной логической базы данных, то ясно, что можно обойтись и без схемы. Но если планируется, что одна и та же СУБД будет использоваться для поддержки нескольких баз данных, то надлежащая организация объектов баз данных в схемы может значительно облегчить сопровождение этих баз данных. На практике схема часто ассоциируется с объектами определенного пользователя физической базы данных.

Далее объекты реляционной базы данных будут вводиться в контексте реляционной СУБД Oracle 9i. Такой подход принят потому, что проектирование физической модели реляционной базы данных выполняется для конкретной среды ее реализации.

В Oracle 9i термин схема (Schema) используется для описания всех объектов базы данных, которые созданы некоторым пользователем. Для каждого нового пользователя автоматически создается новая схема.

К числу основных объектов реляционных баз данных относятся таблица, представление и пользователь.

Таблица (Table) является базовой структурой реляционной базы данных. Она представляет собой единицу хранения данных - отношение. Таблица идентифицируется в базе данных своим уникальным именем, которое включает в себя идентификацию пользователя. Таблица может быть пустой или состоять из набора строк.

Представление (View) - это поименованная динамически поддерживаемая СУБД выборка из одной или нескольких таблиц базы данных. Оператор выборки ограничивает видимые пользователем данные. Обычно СУБД гарантирует актуальность представления - его формирование производится каждый раз, когда представление используется. Иногда представления называют виртуальными таблицами .

Пользователь (User) - это объект, обладающий возможностью создавать или использовать другие объекты базы данных и запрашивать выполнение функций СУБД , таких как организация сеанса работы, изменение состояние базы данных и т. д.

Для упрощения идентификации и именования объектов в базе данных поддерживается такие объекты, как синоним, последовательность и .

Синоним ( Synonym ) - это альтернативное имя объекта (псевдоним) реляционной базы данных, которое позволяет иметь доступ к данному объекту. Синоним может быть общим и частным. Общий синоним позволяет всем пользователям базы данных обращаться к соответствующему объекту по его псевдониму. Синоним позволяет скрыть от конечных пользователей полную квалификацию объекта в базе данных.

Последовательность (Sequence) - это объект базы данных, который позволяет генерировать последовательность уникальных чисел (номеров) в условиях многопользовательского асинхронного доступа. Обычно элементы последовательности используются для уникальной нумерации элементов таблиц (строк) в операциях модификации данных.

Определенные пользователем типы данных ( User-defined data types ) представляют собой определенные пользователем типы атрибутов (домены), которые отличаются от поддерживаемых (встроенных) СУБД типов. Они определяются на основе встроенных типов. Определенные пользователем типы данных образуют ту часть среды СУБД, которая организована в соответствии с объектно-ориентированной парадигмой.

Для обеспечения эффективного доступа к данным в реляционных СУБД поддерживаются ряд других объектов: индекс, табличная область, кластер, секция.

Индекс (Index) - это объект базы данных, создаваемый для повышения производительности выборки данных и контроля уникальности первичного ключа (если он задан для таблицы). Полностью индексные таблицы (index-organized tables) исполняют роль таблицы и индекса одновременно.

Табличное пространство или область ( Tablespace ) - это именованная часть базы данных, используемая для распределения памяти для таблиц и индексов. В Oracle 9i - это логическое имя физических файлов операционной системы. Все объекты базы данных, в которых хранятся данные, соответствуют некоторым табличным пространствам . Большинство объектов базы данных, в которых данные не хранятся, находятся в словаре данных, расположенном в табличном пространстве SYSTEM .

Кластер (Cluster) - это объект, задающий способ совместного хранения данных в нескольких или одной таблице. Одним из критериев использования кластера является наличие общих ключевых полей в нескольких таблицах, которые используются в одной и той же команде SQL. Обычно кластеризованные столбцы или таблицы хранятся в базе данных в виде таблиц хэширования (т.е. специальным образом).

Секция (Partition) - это объект базы данных, который позволяет представить объект с данными в виде совокупности подобъектов, отнесенных к различным табличным пространствам . Таким образом, секционирование позволяет распределять очень большие таблицы на нескольких жестких дисках.

Для обработки данных специальным образом или для реализации поддержки ссылочной целостности базы данных используются объекты: хранимая процедура, функция, команда, триггер, таймер и пакет (Oracle). С помощью этих объектов базы данных можно выполнять так называемую построчную обработку (record processing) данных. С точки зрения приложений баз данных построчная обработка - это последовательная выборка данных по одной строке, ее обработка и переход к обработке следующей строки.

Данные объекты реляционной базы данных представляют собой программы, т.е. исполняемый код. Этого код обычно называют серверным кодом (server-side code) , поскольку он выполняется компьютером, на котором установлено ядро реляционной СУБД. Планирование и разработка такого кода является одной из задач проектировщика реляционной базы данных.

Хранимая процедура ( Stored procedure ) - это объект базы данных, представляющий поименованный набор команд SQL и/или операторов специализированных языков обработки программирования базы данных (например, SQLWindows или PL/SQL).

Функция (Function) - это объект базы данных, представляющий поименованный набор команд SQL и/или операторов специализированных языков обработки программирования базы данных, который при выполнении возвращает значение - результат вычислений.

Команда (Command) - это поименованный оператор SQL, который заранее откомпилирован и сохраняется в базе данных. Скорость обработки команды выше, чем у соответствующего ему оператора SQL, т.к. при этом не выполняются фазы синтаксического разбора и компиляции.

Триггер (Trigger) - это объект базы данных, который представляет собой специальную хранимую процедуру. Эта процедура запускается автоматически, когда происходит связанное с триггером событие (например, до вставки строки в таблицу).

Таймер (Timer) отличается от триггера тем, что запускающим событием для хранимой процедуры является событие таймера.

Пакет (Package) - это объект базы данных, который состоит из поименованного структурированного набора переменных, процедур и функций.

В распределенных реляционных СУБД имеются специальные объекты: снимок и связь базы данных.

Снимок (Snapshop) - локальная копия таблицы удаленной базы данных, которая используется для тиражирования (репликации) таблицы или результата запроса. Снимки могут быть модифицируемыми или предназначенными только для чтения.

Связь базы данных (Database Link) или связь с удаленной базой данных - это объект базы данных, который позволяет обратиться к объектам удаленной базы данных. Имя связи базы данных, грубо говоря, можно представить как ссылку на параметры доступа к удаленной базы данных.

Для эффективного управления разграничением доступа к данным в Oracle поддерживает объект роль.

Роль (Role) - объект базы данных, представляющий собой поименованную совокупность привилегий, которые могут назначаться пользователям, категориям пользователей или другим ролям.

План-конспект урока

Тема: Базы данных. Основные объекты БД. СУБД.

Цель урока:

  • 1. Познавательная - познакомить учащихся с:
    • определением базы данных и СУБД,
    • их основными типами (моделями),
    • интерфейсом программы Ms ACCESS,
    • основными объектами БД,
    • разными способами создания таблиц.
  • 2. Развивающая
    • Учить строить аналогии, выделять главное, ставить и решать проблемы.
  • 3. Воспитательная
    • Воспитывать аккуратность, внимательность, вежливость и дисциплинированность.

План урока:

  • 1. Актуализация опорных знаний.
  • 2. Запуск программ на выполнение;
  • 3. Ввод данных в таблицу.
  • 2. Определение БД И СУБД.
  • 3. Типы СУБД.
  • 4. Реляционная СУБД. Таблица, запись, поле.
  • 5. Самостоятельная работа на компьютере.
  • 6. Закрепление нового материала.
  • 7. Итоги урока.
  • 1 Определение БД И СУБД

    База данных (БД) – это совокупность взаимосвязанных данных, которые хранятся во внешней памяти компьютера, и организованы по определенным правилам, которые предполагают общие принципы описания, хранения и обработки данных. Информация, которая хранится в БД, как правило, относится к некоторой конкретной предметной области. Например, базы данных:

    • книжного фонда библиотеки,
    • кадрового состава предприятия,
    • законодательных актов уголовного права,
    • современной музыки.

    БД делятся на фактографические и документальные. Фактографические БД содержат короткие сведения об объектах, поданные в точно определенном формате (1-3), например, Автор, название, год издания … В документальных БД содержится информация разного типа: текстовая, звуковая, графическая, мультимедийная (4, 5). Например, БД современной музыки может содержать тексты и ноты песен, фотографии авторов, звуковые записи, видеоклипы. Сама по себе БД содержит только информацию – «Информационный склад» –и не может обслуживать запросы пользователя на поиск и обработку информации. Обслуживание пользователя осуществляет СИСТЕМА УПРАВЛЕНИЯ БАЗОЙ ДАННЫХ. СУБД – Это ПО, которое позволяет создавать БД, обновлять и дополнять информацию, обеспечивать гибкий доступ к информации. СУБД создает на экране компьютера определенную среду для работы пользователя (интерфейс), и имеет определенные режимы работы и систему команд. Именно на основе СУБД создаются и функционируют информационно-поисковые системы(WWW).

    3. Типы СУБД

    Известны 3 способа организации информации в БД и связей между ними:

    • Иерархические (в виде дерева),
    • Сетевые,
    • Реляционные.

    Иерархические. Существует строгая подчиненность элементов: один главный, остальные подчиненные. Например, система каталогов на диске. Сетевая БД более гибкая: нет явно выраженного главного элемента и существует возможность установления горизонтальных связей. Например, организация информации в Интернете (WWW). Наиболее распространенными являются реляционные БД.

    4. Реляционная СУБД. Таблица, запись, поле.

    Реляционной (от английского “ relation” - отношение) называется БД, которая содержит информацию, организованную в виде прямоугольной таблицы. Каждая строка таблицы содержит информацию об одном конкретном объекте БД (книге, сотруднике, товаре), а каждый столбец – конкретную характеристику этого объекта (фамилия, название, цена). Строки такой таблицы называются записями, столбцы – полями. Каждая запись должна отличаться от другой значением хотя бы одного поля, которое называется ключом. Ключевое поле – это поле или группа полей, которые однозначно определяют запись. Например, табельный номер сотрудника, код изделия, номер автомобиля. Таб_№ ФИО Дата_рожд Дата_приема Должность Оклад 001 < Иванов И.И. 12.05.65 1.02.80 директор 1000 002 Петров П.П. 30.10.75 2.03.95 бугалтер 500 003 Сидоров С.С 4.01.81 4.06.00 исполнитель 100 Каждое поле имеет свой формат и тип. Реальные БД состоят, как правило, из нескольких таблиц, связанных между собой каким-нибудь полем и, при запросе к такой БД можно использовать информацию из разных таблиц. Основные объекты БД:

    • Таблицы - основные объекты БД, где хранится информация,
    • Запросы – предназначенные для выбора нужных данных из одной или нескольких взаимосвязанных таблиц.
    • Формы – предназначенные для ввода, просмотра и редактирования взаимосвязанных данных в удобном виде.
    • Отчёты – формирование данных в удобном для просмотра виде и при необходимости их печати.

    5. Самостоятельная работа на компьютере

    На сетевом диске, в папке «ЗАДАНИЯ ДЛЯ БД» открыть презентацию «Базы данных и СУБД», прочитать ее и ответить письменно на вопросы:

    • 1. Какое основное назначение БД?
    • 2. По каким критериям классифицируются БД? Укажите критерий и виды, соответственно этого критерия.
    • 3. Что такое ключевое поле в БД?
    • 4. Какой основной элемент БД?
    • 5. Какие операции можно производить с помощью СУБД с БД?
    • 6. Основные типы данных в таблицах СУБД.

    6. Итоги урока

    На этом уроке вы познакомились с базами данных, их назначением, областями применения, типами, моделями СУБД.

    Практическая часть

    Создание базы данных. Ввод и форматирование данных

    • 1. Включите компьютер. Загрузите СУБД ACCESS. Сначала нужно создать новую базу данных.
    • 2. Выполним следующую последовательность действий: в меню Файл выберем команду Создать. Имя файла: skaz.mdb. OK. Перед вами появилось диалоговое окно «База данных».
    • 3. Внимательно прочитайте назначение кнопок на панели инструментов, медленно перемещая курсор мыши по кнопкам.
    • 4. После этого создайте таблицу, выполнив следующую последовательность действий: Таблица/Создать/Новая таблица.

    Создание таблицы, то есть определение входящих в таблицу полей, производится заполнением специальной таблицы: Поле Тип данных Описание

    • 5. Заполните такую таблицу, внеся в нее следующие данные:

    Поле Тип данных Описание № Счетчик Персонаж Текстовый Профессия Текстовый Особые приметы Текстовый Герой Логический Положительный или отрицательный герой

    • 6. Поле № не обязательное, мы его вводим для того, чтобы определить ключевое поле, так как любая таблица должна иметь ключ.
    • 7. Созданную таблицу нужно сохранить, дав ей имя с помощью команд: Файл/Сохранить как..., Имя таблицы: «Персонаж», OK.
    • 8. Введите информацию в таблицу Таблица/«Персонаж»/Открыть и обычным образом введите данные, например такие:

    № Персонаж Профессия особые приметы герой

    • 1 Буратино деревянный человечек длинный нос Да
    • 2 Папа Карло Шарманщик Да
    • 3 Карабас Барабас директор кукольного театра длинная борода, достающая до пола Нет
    • 4 Лиса Алиса Мошенница хромая на одну ногу Нет
    • 5 Кот Базилио Мошенник слепой на оба глаза Нет
    • 6 Мальвина артистка театра девочка с голубыми волосами Да
    • 7 Дуремар Фармацевт характерный запах тины Нет
    • 8 Тортилла хранительница золотого ключика черепаха Да
    • 9. При помощи мыши выделите:
      • а) запись 5,
      • б) запись 3,
      • в) с третьей по седьмую запись. Отмените выделение.
      • г) Выделите все записи. Отмените выделение.
      • д) Выделите поле «Персонаж».
      • е) Выделите одновременно поля: «Профессия», «Особые приметы» и «Герой», отмените выделение.
      • ж) Выделите все поля. Это можно сделать при помощи мыши или в меню Правка выбрать команду Выделить все записи.
    • 10. Отмените выделение.
    • 11. Выделите:
      • а) В поле «Особые приметы» отметьте шестую запись.
      • б) В поле «Персонаж» выделите с четвертой по шестую запись.
      • в) Не отпуская кнопку мыши, отметьте эти же записи в полях «Особые приметы» и «Герой».
    • 12. Отмените выделение.
    • 13. Выделите всю таблицу.
    • 14. Отмените выделение.
    • 15. Измените ширину каждого столбца, так чтобы ширина колонок была минимальной, но был виден весь текст.

    Это можно сделать при помощи мыши, раздвинув столбцы или следующим образом. Выделите нужный столбец и нажмите правую кнопку мыши, в контекстном меню выберете команду «Ширина столбца»; в открывшемся окне нажмите кнопку По ширине данных. Проделайте такую же работу со всеми полями. Высоту строки можно изменить аналогичным образом с помощью мыши или в меню Формат командой Высота строки. Причем достаточно отредактировать одну строку, высота остальных строк изменяется автоматически.

    • 16. Любым способом измените высоту строки и сделайте ее равной 30.
    • 17. Измените шрифт таблицы на Arial Cyr, размер шрифта 14, полужирный.

    Изменить шрифт можно так: вывести указатель мыши за пределы таблицы и нажать левую кнопку мыши, в контекстном меню выбрать Шрифт или в меню Правка на панели инструментов выбором команды Шрифт.

    • 18. Измените шрифт текста на Times New Roman Cyr, размер шрифта 10.
    • 19. Измените ширину полей.
      • а) Сделайте столбец «Персонаж» шириной 20.
      • б) Столбец «Особые приметы» шириной 25.

    Вы видите, что текст в этих полях напечатался в две строки.

    • 20. Подгоните ширину столбцов так, чтобы текст вмещался полностью.
    • 21. Выполните сортировку таблицы по полю «Персонаж» в порядке, обратном алфавитному.

    Это можно сделать так. Выделите поле «Персонаж» и нажмите кнопку Сортировка по убыванию на панели инструментов.

    • 22. Верните таблицу в исходное состояние.

    База данных (БД) - структурированный организованный набор данных, описывающих характеристики какой-либо физической или виртуальной системы.

    База данных - это организованная структура, предназначенная для хранения информации.

    СУБД - инструментальное программное обеспечение, предназначенное для организации ведения БД.

    По виду модели БД разделяются:

      Иерархические БД

    В основе иерархических СУБД лежит довольно простая модель данных, которую можно представить себе в виде дерева ациклического ориентированного графа особого вида. Дерево состоит из вершин, каждая из которых, кроме одной, имеет единственную родительскую вершину и несколько (в том числе ни одной) дочерних.

      Сетевые СУБД

    Подобно иерархической, сетевую модель также можно представить себе в виде ориентированного графа. Но в этом случае граф может содержать циклы, т.е. вершина может иметь несколько родительских.

      Реляционные СУБД

    Реляционные СУБД являются в настоящий момент самыми распространенными. Реляционная модель ориентирована на организацию данных в виде двумерных таблиц. Реляционная таблица представляет собой двумерный массив и обладает следующими свойствами:

    Каждый элемент таблицы - один элемент данных;

    Все столбцы в таблице однородные, т.е. все элементы в столбце имеют одинаковый тип (числовой, символьной и т.д.) и длину;

    Каждый столбец имеет уникальное имя.

    Немалую роль в успехе реляционных СУБД играет также язык SQL (язык структурированных запросов), разработанный специально для запросов к реляционным БД. Это достаточно простой и в то же время выразительный язык, при помощи которого можно выполнять достаточно изощренные запросы к базе.

      Объектно-ориентированные

    базы данных, в которой данные оформлены в виде моделей объектов, включающих прикладные программы, которые управляются внешними событиями. В наиболее общей и классической постановке объектно-ориентированный подход базируется на концепциях: объекта и идентификатора объекта; атрибутов и методов; классов; иерархии и наследования классов.

      Многомерные

    Программное обеспечение OLAP используется при обработке данных из различных источников. Эти программные продукты позволяют реализовать множество различных представлений данных и характеризуются тремя основными чертами: многомерное представление данных; сложные вычисления над данными; вычисления, связанные с изменением данных во времени.

    9. Языки программирования. Машинный код. Трансляторы. Двоичное кодирование информации.

    Язык программирования - формальная знаковая система, предназначенная для описания алгоритмов в форме, которая удобна для исполнителя (например, компьютера). Язык программирования определяет набор лексических, синтаксических и семантических правил, используемых при составлении компьютерной программы. Он позволяет программисту точно определить то, на какие события будет реагировать компьютер, как будут храниться и передаваться данные, а также какие именно действия следует выполнять над этими данными при различных обстоятельствах.

    Машинный код процессора

    Процессор компьютера все команды и данные получает в виде электрических сигналов. Их можно представить как совокупности нулей и единиц, то есть числами. Разным командам соответствуют разные числа. Поэтому реально программа, с которой работает процессор, представляет собой последовательность чисел, называемую машинным кодом .

    Уровни языков программирования

    Если язык программирования ориентирован на конкретный тип процессора и учитывает его особенности, то он называется языком программирования низкого уровня . Имеется в виду, что операторы языка близки к машинному коду и ориентированы на конкретные команды процессора.

    Языком самого низкого уровня является язык ассемблера , который просто представляет каждую команду машинного кода, но не в виде чисел, а с помощью символьных условных обозначений, называемых мнемониками.

    Языки программирования высокого уровня значительно ближе и понятнее человеку, нежели компьютеру. Особенности конкретных компьютерных архитектур в них не учитываются, поэтому создаваемые программы на уровне исходных текстов легко переносимы на другие платформы, для которых создан транслятор этого языка.

    Популярными на сегодня являются языки программирования:

    Pascal (Паскаль), создан в конце 70-х годов основоположником множества идей современного программирования Никлаусом Виртом и имеет возможности, позволяющие успешно применять его при создании крупных проектов.

    Basic (Бейсик), д ля этого языка имеются и компиляторы, и интерпретаторы, а по популярности он занимает первое место в мире. Он создавался в 60-х годах в качестве учебного языка и очень прост в изучении. Его современная модификация Visual Basic, совместимая с Microsoft office, позволяет расширять возможности пакетов Excel и Access.

    С (Си), Данный язык был создан в лаборатории Bell и первоначально не рассматривался как массовый. Он планировался для замены ассемблера, чтобы иметь возможность создавать столь же эффективные и компактные программы, и в то же время не зависеть от конкретного типа процессора. На этом языке в 70-е годы написано множество прикладных и системных программ и ряд известных операционных систем (Unix).

    Некоторые языки, например, Java и C#, находятся между компилируемыми и интерпретируемыми. А именно, программа компилируется не в машинный язык, а в машинно-независимый код низкого уровня, байт-код. Далее байт-код выполняется виртуальной машиной. Для выполнения байт-кода обычно используется интерпретация, хотя отдельные его части для ускорения работы программы могут быть транслированы в машинный код непосредственно во время выполнения программы по технологии компиляции «на лету» (Just-in-time compilation, JIT). Для Java байт-код исполняется виртуальной машиной Java (Java Virtual Machine, JVM), для C# - Common Language Runtime.

    Основные функции СУБД Прикладное программное обеспечение ППО, пользователи Система управления базами данных Операционная система База данных Обеспечение доступа ППО к базе данных Управление базой данных «железо»

    СУБД Программные составляющие СУБД включают в себя ядро и сервисные средства (утилиты). ØЯдро СУБД – это набор программных модулей, необходимый и достаточный для создания и поддержания БД, то есть универсальная часть, решающая стандартные задачи по информационному обслуживанию пользователей. ØСервисные программы предоставляют пользователям ряд дополнительных возможностей и услуг, зависящих от описываемой предметной области и потребностей конкретного пользователя. Системой управления базами данных называют программную систему, предназначенную для создания на ЭВМ общей базы данных для множества приложений, поддержания её в актуальном состоянии и обеспечения эффективного доступа пользователей к содержащимся в ней данным в рамках предоставленных им полномочий.

    Классификация СУБД По степени универсальности СУБД делят на два класса: 1. СУБД общего назначения (СУБД ОН) 2. специализированные СУБД (Сп. СУБД). Специализированные СУБД создаются в тех случаях, когда ни одна из существующих СУБД общего назначения не может удовлетворительно решить задачи, стоящие перед разработчиками. Причин может быть несколько: не достигается требуемого быстродействия обработки данных; необходима работа СУБД в условиях жёстких аппаратных ограничений; требуется поддержка специфических функций обработки данных. Сп. СУБД предназначены для решения конкретной задачи, а приемлемые параметры этого решения достигаются следующим образом: 1. за счёт знания особенностей конкретной предметной области, 2. путём сокращения функциональной полноты системы.

    Классификация СУБД По методам организации хранения и обработки данных СУБД делят на Ø Централизованные Ø Распределённые. Первые работают с БД, которая физически хранится в одном месте (на одном компьютере). Это не означает, что пользователь может работать с БД только за этим же компьютером: доступ может быть удалённым (в режиме клиент–сервер). Большинство централизованных СУБД перекладывает задачу организации удалённого доступа к данным на сетевое обеспечение, выполняя только свои стандартные функции, которые усложняются за счёт одновременности доступа многих пользователей к данным. По модели данных различают иерархические, сетевые, реляционные, объектно-реляционные и объектно-ориентированные СУБД.

    Требования к реляционным СУБД (по Кодду) 1. 2. 3. Явное представление данных (The Information Rule). Информация должна быть представлена в виде данных, хранящихся в ячейках. Данные, хранящиеся в ячейках, должны быть атомарны. Порядок строк в реляционной таблице не должен влиять на смысл данных. Гарантированный доступ к данным (Guaranteed Access Rule). К каждому элементу данных должен быть гарантирован доступ с помощью комбинации имени таблицы, первичного ключа строки и имени столбца. Полная обработка неизвестных значений (Systematic Treatment of Null Values). Неизвестные значения (NULL), отличные от любого известного значения, должны поддерживаться для всех типов данных при выполнении любых операций.

    Требования к реляционным СУБД (по Кодду) 4. 5. Доступ к словарю данных в терминах реляционной модели (Dynamic On-Line Catalog Based on the Relational Model). Словарь данных должен сохраняться в форме реляционных таблиц, и СУБД должна поддерживать доступ к нему при помощи стандартных языковых средств. Полнота подмножества языка (Comprehensive Data Sublanguage Rule). Система управления реляционными базами данных должна поддерживать единственный язык запросов, который позволяет выполнять все операции работы к данным: операции определения данных, операции манипулирования данными, управление доступом к данным, управление транзакциями.

    Требования к реляционным СУБД (по Кодду) 6. 7. Поддержка обновляемых представлений (View Updating Rule). Обновляемое представление должно поддерживать все операции манипулирования данными, которые поддерживают реляционные таблицы: операции выборки, вставки, модификации и удаления данных. Наличие высокоуровневых операций управления данными (High-Level Insert, Update, and Delete). Операции вставки, модификации и удаления данных должны поддерживаться не только по отношению к одной строке реляционной таблицы, но по отношению к любому множеству строк.

    Требования к реляционным СУБД (по Кодду) 8. Физическая независимость данных (Physical Data Independence). Приложения не должны зависеть от используемых способов хранения данных на носителях, от аппаратного обеспечения компьютеров, на которых находится реляционная база данных. 9. Логическая независимость данных (Logical Data Independence). Представление данных в приложении не должно зависеть от структуры реляционных таблиц.

    Требования к реляционным СУБД (по Кодду) 10. Независимость контроля целостности (Integrity Independence). Вся информация, необходимая для поддержания целостности, должна находиться в словаре данных. СУБД должна выполнять проверку заданных ограничений целостности и автоматически поддерживать целостность данных. 11. Независимость от распределенности (Distribution Independence). База данных может быть распределенной, может находиться на нескольких компьютерах, и это не должно оказывать влияние на приложения. 12. Согласование языковых уровней (Non-Subversion Rule). Не должно быть иного средства доступа к данным, отличного от стандартного языка работы с данными. Если используется низкоуровневый язык доступа к данным, он не должен игнорировать правила безопасности и целостности, которые поддерживаются языком более высокого уровня.

    Требования к составу и функциям СУБД 1. Хранение, извлечение и обновление данных. 2. Каталог (ССД), доступный конечным пользователям. Обычно в системном каталоге хранятся следующие сведения: имена, типы и размеры элементов данных; имена связей; накладываемые на данные ограничения поддержки целостности; имена пользователей, которым предоставлено право доступа к данным; внешняя, концептуальная и внутренняя схемы и отображения между ними; статистические данные, например частота транзакций и счетчики обращений к объектам базы данных.

    Преимущества наличия ССД ØИнформация о данных может быть централизованно собрана и сохранена, что позволит контролировать доступ к этим данным. ØМожно определить смысл данных, что поможет другим пользователям понять их предназначение. ØУпрощается общение, так как имеются точные определения смысла данных. ØВ системном каталоге также могут быть указаны один или несколько пользователей, которые являются владельцами данных или обладают правом доступа к ним. ØБлагодаря централизованному хранению избыточность и противоречивость описания отдельных элементов данных могут быть легко обнаружены. ØВнесенные в базу данных изменения могут быть запротоколированы. ØПоследствия любых изменений могут быть определены еще до их внесения, поскольку в системном каталоге зафиксированы все существующие элементы данных, установленные между ними связи, а также все их пользователи. ØМеры обеспечения безопасности могут быть дополнительно усилены. ØПоявляются новые возможности организации поддержки целостности данных. ØМожет выполняться аудит хранимой информации.

    Системный словарь данных Oracle Хранит всю информацию о структуре, информационных объектах и отношениях в конкретной базе данных. Словарь данных представляет собой набор таблиц и вспомогательных объектов (индексов, кластеров, синонимов, представлений, последовательностей), информация о которых также хранится в таблицах словаря. Логически словарь данных разделяется на: üбазовые таблицы; üпредставления базовых таблиц; üдинамические таблицы и их представления. Всего словарь данных включает более 100 базовых таблиц, которые расположены в табличном пространстве SYSTEM и нигде более. Их имена включают символ "$" (поэтому его не рекомендуется использовать в названиях небазовых объектов), например: AUD$ – таблица audit-информации; FILE$ – таблица файлов; USER$ – таблица пользователей; IND$ – таблица индексов; OBJ$ – таблица объектов; SEG$ – таблица сегментов; SYN$ – таблица синонимов; TAB$ – таблица таблиц; TS$ – таблица табличных областей; VIEW$ – таблица представлений.

    Работа с системным словарём Для получения информации из словаря данных пользователям предоставлены представления базовых таблиц. Они разбиты на три группы: DBA – представления, предназначенные пользователям, являющимися АБД, то есть которым присвоена роль DBA. По этим представлениям предоставляется наиболее полная информация из словаря данных; USER – представления, по которым каждый пользователь получает информацию о тех объектах, которыми владеет; ALL – представления, дающие каждому пользователю всю информацию об объектах, к которым ему разрешен доступ. Например: DBA/ALL/USER_INDEXES – все/доступные/пользовательские индексы; DBA/ALL/USER_IND_COLUMNS – все/доступные/пользовательские колонки индексов; DBA/ALL/USER_OBJECTS – все/доступные/пользовательские объекты; DBA/ALL/USER_SYNONYMS – все/доступные/пользовательские синонимы; DBA/ALL/USER_TABLES – все/доступные/пользовательские таблицы; DBA/ALL/USER_TAB_COLUMNS – все/доступные/пользовательские колонки таблиц; DBA/ALL/USER_TAB_PRIVS – все/доступные/пользовательские привилегии на таблицы; DBA/ALL/USER_VIEWS – все/доступные/пользовательские представления.

    Работа с системным словарём Некоторые представления (по смыслу их применения) присутствуют только в одной или двух группах. Наиболее характерно это для DBA-представлений, например: DBA_DATA_FILES – данные о физических файлах базы и журналов; DBA/USER_FREE_SPACE – свободная память в табличных пространствах (вся и доступная конкретному пользователю); DBA_PROFILES – перечень вариантов "стоимости" системных ресурсов; DBA_ROLES – перечень определенных в базе данных ролей. Примеры извлечения данных из ССД: select table_name from user_tables; select * from all_views; select view_name from dba_views;

    Работа с системным словарём Важное значение имеет синоним DICT к представлению DICTIONARY. По нему выбираются имена таблиц, представлений, синонимов словаря данных с описаниями, если таковые есть в базе данных. Приведем небольшой фрагмент: select * from dict; ALL_CATALOG Все таблицы, представления, синонимы, последовательности, доступные пользователю ALL_DB_LINKS Связи базы данных, доступные пользователю DBA_OBJECTS Все объекты в базе данных DBA_ROLES Все роли, которые существуют в БД USER_EXTENTS Экстенты, принадлежащие пользователю USER_VIEWS Определения представлений, принадлежащих пользователю DUAL Специальная таблица, содержащая один столбец DUMMY и одну строку DICT Синоним для DICTIONARY TABS Синоним для USER_TABLES

    Работа с системным словарём АБД открыт доступ к этим таблицам, но работать на этом уровне, за исключением случаев КРАЙНЕЙ необходимости, НИКОГДА НЕ рекомендуется: вся информация словаря данных доступна через представления базовых таблиц; данные в базовых таблицах представлены без дублирования по правилам внутри системной упорядоченности, без расшифровки; количество, названия, размеры столбцов таблиц сделаны без учета достаточной наглядности; случайная, намеренная или еще по какой-либо причине КОРРЕКТИРОВКА содержимого базовых таблиц (даже в очевидных случаях, например, хранение данных о давно удаленных табличных пространствах), как правило, приводит к ПОВРЕЖДЕНИЮ словаря данных, то есть к ПОТЕРЕ всей базы данных. Редчайшее исключение представляет AUD$ (таблица аудиторской информации), из которой следует периодически удалять ненужные записи, поскольку при включенном audit-режиме эта таблица быстро наполняется и может переполнить табличное пространство SYSTEM.

    Требования к составу и функциям СУБД 3. 4. 5. 6. 7. 8. 9. Поддержка транзакций. Служба управления параллельной работой. Службы восстановления. Службы контроля доступа к данным. Службы поддержки целостности данных. Службы поддержки независимости от данных. Вспомогательные службы.

    Вспомогательные службы Обычно предназначены для оказания помощи АБД в эффективном администрировании базы данных. Некоторые примеры подобных утилит. Утилиты импортирования, предназначенные для загрузки базы данных из плоских файлов, а также утилиты экспортирования, которые служат для выгрузки базы данных в плоские файлы. Средства мониторинга, предназначенные для отслеживания характеристик функционирования и использования базы данных. Программы статистического анализа, позволяющие оценить производительность или степень использования базы данных. Инструменты реорганизации индексов, предназначенные для перестройки индексов в случае их переполнения. Инструменты сборки мусора и перераспределения памяти для физического устранения удаленных записей с запоминающих устройств, объединения освобожденного пространства и перераспределения памяти по мере необходимости.

    Основные программные компоненты СУБД Процессор запросов. Преобразует запросы в последовательность низкоуровневых команд для диспетчера базы данных. Диспетчер базы данных. Принимает запросы и проверяет внешние и концептуальные схемы для определения тех концептуальных записей, которые необходимы для удовлетворения требований запроса. Затем вызывает диспетчер файлов для выполнения поступившего запроса. Диспетчер файлов. Манипулирует предназначенными для хранения данных файлами и отвечает за распределение доступного дискового пространства. Он создает и поддерживает список структур и индексов, определенных во внутренней схеме. Если используются хешированные файлы, то в его обязанности входит и вызов функций хеширования для генерации адресов записей.

    Основные программные компоненты СУБД Препроцессор языка DML. Этот модуль преобразует внедренные в прикладные программы DML-операторы в вызовы стандартных функций базового языка. Для генерации соответствующего кода препроцессор языка DML должен взаимодействовать с процессором запросов. Компилятор языка DDL. Преобразует DDL-команды в набор таблиц, содержащих метаданные. Затем эти таблицы сохраняются в системном каталоге, а управляющая информация - в заголовках файлов с данными. Диспетчер словаря. Управляет доступом к системному каталогу и обеспечивает работу с ним. Системный каталог доступен большинству компонентов СУБД.

    Основные программные компоненты СУБД Модуль контроля прав доступа. Этот модуль проверяет наличие у данного пользователя полномочий для выполнения затребованной операции. Процессор команд. После проверки полномочий пользователя для выполнения затребованной операции управление передается процессору команд. Средства контроля целостности. В случае операций, которые изменяют содержимое базы данных, средства контроля целостности выполняют проверку того, удовлетворяет ли затребованная операция всем установленным ограничениям поддержки целостности данных (например, требованиям, установленным для ключей). Оптимизатор запросов. Этот модуль определяет оптимальную стратегию выполнения запроса.

    Основные программные компоненты СУБД Диспетчер транзакций. Осуществляет требуемую обработку операций, поступающих в процессе выполнения транзакций. Планировщик. Отвечает за бесконфликтное выполнение параллельных операций с базой данных. Он управляет относительным порядком выполнения операций, затребованных в отдельных транзакциях. Диспетчер восстановления. Гарантирует восстановление базы данных до непротиворечивого состояния при возникновении сбоев. В частности, он отвечает за фиксацию и отмену результатов выполнения транзакций. Диспетчер буферов. Отвечает за перенос данных между оперативной памятью и вторичным запоминающим устройством - например, жестким диском или магнитной лентой. Диспетчер восстановления и диспетчер буферов иногда (в совокупности) называют диспетчером данных, а сам диспетчер буферов - диспетчером кэша.

    Основные объекты Oracle База данных (DATABASE) – объект, который находится на самом верхнем уровне физической организации базы данных Oracle находится объект, который так и называется: база данных (database). База данных состоит из словаря-справочника данных, собственно данных и различных вспомогательных объектов: файла параметров инициализации, управляющего файла, файла сегментов отката и двух файлов журнала транзакций. (Этот перечень может быть расширен, например, за счет копий управляющего файла). База данных может быть создана автоматически при инсталляции СУБД Oracle или вручную с помощью команды CREATE DATABASE. Табличная область (TABLESPACE) – область памяти, предназначенная для хранения всех объектов БД. Табличная область имеет имя и занимает один или более файлов операционной системы. Создается командой CREATE TABLESPACE. Иногда табличную область называют табличным пространством.

    Основные объекты Oracle Пользователь (USER) – объект, обладающий возможностью создавать и использовать другие объекты Oracle, а также запрашивать выполнение функций сервера. К числу таких функций относятся организация сессии, изменение состояния сервера и базы данных, создание других объектов БД, запросы на выполнение операторов SQL и проч. В СУБД Oracle имя пользователя совпадает с именем схемы. Создается командой CREATE USER. Каждый объект БД принадлежит тому пользователю, который его создал, и находится в его схеме. Полное имя любого объекта БД (кроме базы данных, табличных областей и пользователей) состоит из имени схемы, в которой он создан, и собственно имени объекта, например: scott. emp Здесь scott – имя пользователя (схемы), emp – имя объекта (таблицы "Сотрудники"), а точка – это т. н. квалифицированная ссылка, разделяющая уровни определения.

    Основные объекты Oracle Кластер (CLUSTER) – объект, задающий способ совместного хранения данных нескольких таблиц, содержащих информацию, обычно обрабатываемую совместно. Кластеризация таблиц позволяет уменьшить время выполнения выборки. Создается командой CREATE CLUSTER. Включает таблицы с данными. Таблица (TABLE) является базовой структурой реляционной модели. Как известно, вся информация в базе данных хранится в таблицах. Таблицы состоят из множества поименованных столбцов или атрибутов. Множество значений столбца определено с помощью ограничений целостности, то есть поддерживается ограниченная концепция домена (множества допустимых значений). Таблица может быть пустой или состоять из одной или более строк значений атрибутов. Строки значений атрибутов таблицы называют также записями или кортежами. Создается командой CREATE TABLE, может быть создана в кластере.

    Основные объекты Oracle Индекс (INDEX) – это объект базы данных, создаваемый для повышения производительности выборки данных. Индекс создается для столбца (столбцов) таблицы и обеспечивает более быстрый доступ к данным этой таблицы за счет упорядочения данных столбца (столбцов) по значению. Создается командой CREATE INDEX. Кластеры, таблицы и индексы называются объектами, занимающими память, т. к. в них хранятся фактографические данные. Им при создании выделяется определенный объем памяти (один или несколько экстентов), который может быть увеличен при добавлении в них данных. Экстент (extent) – это непрерывная область памяти в табличном пространстве. Все экстенты, относящиеся к одному объекту, образуют сегмент (segment). Кластер Таблица Индекс

    Основные объекты Oracle Представление (VIEW) – это поименованная, динамически поддерживаемая сервером выборка данных из одной или нескольких таблиц. В основе представления лежит оператор SELECT, который называется базовым запросом представления. Базовый запрос определяет видимые пользователем данные. Представление позволяет ограничить данные, которые пользователь может модифицировать. Данные в представлении не хранятся: сервер формирует представление каждый раз при обращении к нему (это называется материализация представления). Используя представления, администратор безопасности может ограничить доступную пользователям часть базы данных только теми данными, которые реально необходимы им для выполнения работы. Создается командой CREATE VIEW. Последовательность (SEQUENCE) – это объект, обеспечивающий генерацию уникальных номеров в условиях многопользовательского асинхронного доступа. Обычно элементы последовательности используются для вставки уникальных идентификационных номеров для элементов таблиц базы данных. Создается командой CREATE SEQUENCE.

    Основные объекты Oracle Синоним (SYNONYM) – это альтернативное имя или псевдоним объекта Oracle, который позволяет пользователям базы данных иметь доступ к данному объекту. Синоним может быть частным и общим. Общий (public) синоним позволяет всем пользователям базы данных обращаться к соответствующему объекту по альтернативному имени. При этом имя схемы для обращения к объекту не надо указывать, даже если Вы подключились не как владелец объекта, а из другой схемы. Создается командой CREATE SYNONYM. Роль (ROLE) – именованная совокупность привилегий, которые могут быть предоставлены пользователям или другим ролям. Используется для эффективного управления разграничением доступа к данным. Oracle поддерживает несколько стандартных или предопределенных ролей (DBA, CONNECT, RESOURCE и др.). Создается командой CREATE ROLE.

    Основные объекты Oracle Специфичными для распределенных систем являются такие объекты Oracle как снимок и связь базы данных. Снимок (SNAPSHOT) – локальная копия таблицы удаленной базы данных, которая используется либо для тиражирования (копирования) всей или части таблицы, либо для тиражирования результата запроса данных из нескольких таблиц. Снимки могут быть модифицируемыми или предназначенными только для чтения. Снимки только для чтения возможно периодически обновлять, отражая изменения основной таблицы. Изменения, сделанные в модифицируемом снимке, распространяются на основную таблицу и другие копии. Создается командой CREATE SNAPSHOT. Связь базы данных (DATABASE LINK) – это объект базы данных, который позволяет обратиться к объектам удаленной базы данных. Имя связи базы данных можно рассматривать как ссылку на параметры механизма доступа к удаленной базе данных (имя узла, протокол и т. п.). Использование одного имени упрощает работу с объектами удаленной базы данных. Создается командой CREATE DATABASE LINK.

    Основные объекты Oracle Для программирования алгоритмов обработки данных, поддержки сложных правил целостности данных Oracle использует процедурные объекты: Процедура (PROCEDURE) – это подпрограмма на языке PL/SQL, предназначенная для решения конкретной задачи обработки данных. Создается командой CREATE PROCEDURE. Функция (FUNCTION) – это подпрограмма на языке PL/SQL, предназначенная для решения конкретной задачи и возвращающая конкретное значение. Создается командой CREATE FUNCTION. Пакет (PACKAGE) – это поименованный, структурированный набор переменных, процедур и функций, связанных единым функциональным замыслом. Пакет состоит из спецификации и тела пакета. Спецификация содержит описания внешних переменных, констант, типов и подпрограмм, а тело пакета – реализацию подпрограмм и описание внутренних переменных, констант и типов, которые доступны только внутри пакета. Спецификация пакета создается командой CREATE PACKAGE, а тело пакета – CREATE PACKAGE BODY. Триггер (TRIGGER) – это хранимая процедура, которая автоматически запускается тогда, когда происходит связанное с триггером событие. Обычно события связаны с выполнением операторов INSERT, UPDATE или DELETE в некоторой таблице. Создается командой CREATE TRIGGER.

    Физическая структура базы данных Oracle Параметры среды: $ORACLE_HOME – имя домашней директории Oracle. $ORACLE_SID – имя базы данных Oracle. База данных Oracle включает: Управляющие файлы (ctrl 1$ORACLE_SID. ctl, ctrl 2$ORACLE_SID. ctl, . .) Файл параметров запуска экземпляра init$ORACLE_SID. ora Файл параметров конфигурации базы config$ORACLE_SID. ora Журнальные файлы регистрации изменений (log 1$ORACLE_SID. dbf, log 2$ORACLE_SID. dbf, . .) Системное табличное пространство (SYSTEM, system$ORACLE_SID. dbf) Временное табличное пространство (TEMP, temp$ORACLE_SID. dbf) Табличное пространство для данных пользователей (USER, user$ORACLE_SID. dbf)

    Структуры оперативной памяти Oracle SGA – это память, используемая всеми процессами экземпляра. Существует всего одна SGA для экземпляра. Изменения, сделанные в элементах SGA для одного процесса, немедленно становятся доступными для всех процессов, функционирующих в составе этого экземпляра. Создаваемая при запуске экземпляра Oracle, SGA имеет фиксированный размер. Она существует до тех пор, пока экземпляр не будет завершен вручную, или случится перезагрузка операционной системы, или произойдет аварийное завершение (крах) собственно Oracle. Основными внутренними структурами SGA являются: кеш буферов данных (Database Buffer Cache), то есть набор свободных, считанных и модифицированных блоков данных, в которых размещается информация из базы; буфер журнала транзакций (Redo Log Buffer); разделяемый (общий) буферный пул (Shared Buffer Pool).

    Структуры оперативной памяти Oracle. SGA Кеш буферов данных содержит два списка: список наименее используемых в данный момент блоков (LRU – least_recently_used), куда входят считанные с диска, но еще не модифицированные блоки, а также свободные буферы данных; список модифицированных (dirty – "грязный"), но еще не записанных на диск блоков. Обратите внимание: обмен "диск-память" всегда производится блоками вне зависимости от их заполненности записями данных и от количества измененных при обработке записей; при обращении к данным Oracle сначала проверяет, имеются ли требуемые данные в кеше буферов, и, только если их нет, обращается к диску; считанные с диска блоки данных попадают в начало списка LRU. Если они затем модифицируются, то Oracle их переводит в список "грязных" блоков для последующей записи на диск; при недостатке в кеше свободных буферов для выполнения очередного запроса Oracle удаляет блоки с "хвоста" списка LRU, как наименее активно используемые, и на их место считывает с диска требуемые блоки данных.

    Структуры оперативной памяти Oracle. SGA Буфер журнала регистрации изменений представляет собой циклически используемую память. В этот буфер поступают все изменения, происходящие в базе с пользовательскими, системными, служебными данными. Поскольку журнал регистрации изменений предназначен для восстановления состояния базы данных после аварийных ситуаций, записи журнала несут в себе "старое" и "новое" значения изменившихся элементов, в частности целиком записи данных после операций вставки их в базу или удаления из БД. Если обработка данных производится так интенсивно, что буфер журнала переполняется, то есть если процесс LGWR (процесс записи в журнал) не успевает переносить данные из буфера на диск, Oracle начинает сдерживать пользовательские процессы. Разделяемый (общий) буферный пул включает в себя: 1. кеш словаря (Dictionary Cache): хранит в себе наиболее часто (в текущей работе) используемые сведения из системного словаря данных, а именно: названия таблиц и представлений, имена столбцов и типы данных, привилегии и роли пользователей, права доступа к объектам базы данных и др. 2. разделяемую (общую) область SQL и PL/SQL (Shared SQL and PL/SQL), которая известна также как "библиотечный кеш" (library cache): включает в себя набор курсоров, то есть структур памяти, в которых хранятся результаты синтаксический разбора и планы выполнения SQL-предложений и блоков PL/SQL.

    Структуры оперативной памяти Oracle. PGA представляет собой область оперативной памяти, выделяемую для обеспечения функционирования отдельного процесса. Имеет место одна и только одна целиком выделяемая процессу и независимая от других процессов PGA для каждого процесса экземпляра. Размер PGA может динамически увеличиваться в процессе функционирования. PGA часто называют глобальной областью процесса (Process Global Area). Когда процесс Oracle нормально завершается, вся память PGA возвращается операционной системе. PGA процесса Oracle-сервера включает в себя: область стека, содержащую переменные и служебную информацию о сеансе; частную SQL-область, которую иногда называют "Глобальной областью пользователя" (UGA – User Global Area), в которой производится синтаксический разбор SQL-предложений и блоков PL/SQL. Эта область физически располагается в SGA (вариант архитектуры MTS) или в PGA (архитектура с выделенными серверами). Важно то, что рекурсивные сессии не получают свои собственные UGA, а разделяют UGA породившей их сессии; необязательная область сортировки (размером sort_area_size), которая как временная память требуется для хранения промежуточных результатов сортировки данных. Если выделенной памяти недостаточно для проведения сортировки, процесс использует временный сегмент соответствующего табличного пространства.

    Процессы экземпляра Oracle Набор работающих с базой данных фоновых процессов и порожденная при запуске экземпляра SGA (Системная Глобальная Область) составляют экземпляр Oracle. Все процессы экземпляра функционируют на едином программном ядре ($ORACLE_HOME/bin/oracle) СУБД. Обычно процессы экземпляра определяют как фоновые (обслуживающие, вспомогательные, дополнительные) и серверные (содержательная обработка запросов). Минимально необходимым для функционирования Oracle является набор из следующих четырех фоновых процессов: ora_pmon_ – процесс мониторинга внутреннего состояния системы ora_dbwr_ – процесс записи данных в базу данных Oracle ora_lgwr_ – процесс записи в журнал регистрации изменений ora_smon_ – процесс системного мониторинга.

    Процессы экземпляра Oracle 1. pmon – фоновый процесс-монитор. Он следит: за состоянием процессов в системе (в частности, он отслеживает обращение к серверу со стороны пользователей (connect) и запускает сервер-процессы); обнаруживает аварийные ситуации и "мертвые" блокировки сервер-процессов; освобождает ресурсы, то есть снимает блокировки; завершает транзакции, удаляет процессы из списка активных; восстанавливает состояние (rollback – откат) базы данных после ненормальных ситуаций завершения пользовательских процессов. 2. dbwr – фоновый процесс записи блоков данных в базу из списка модифицированных блоков в SGA. dbwr "пробуждается" к работе, если: длина списка модифицированных блоков превысила пороговое значение; в списке свободных буферов не хватает памяти для чтения новых блоков; истек очередной 3 -х секундный интервал времени; фоновый процесс записи в журнал lgwr сигнализирует о начале формирования очередной контрольной точки.

    Процессы экземпляра Oracle 3. lgwr – фоновый процесс записи в журнал регистрации изменений в базе данных. Регистрация транзакций осуществляется следующим образом: по мере выполнения транзакции создаются небольшие записи, называемые элементами повтора (redo entries), в которых содержится информация, достаточная для воссоздания изменений, вносимых транзакцией. элементы повтора транзакции временно сохраняются в буфере журнала повтора. когда запрашивается завершение транзакции, процесс lgwr считывает необходимые элементы повтора из буфера журнала транзакций и записывает их в журнал транзакций базы данных. Транзакция считается завершенной, когда процесс lgwr запишет элемент повтора транзакции в журнал транзакций и сделает запись о ее завершении в журнале транзакций. Данные из SGA-буфера переносятся на диск в следующих случаях: выполнена операция COMMIT фиксации изменений очередной транзакции; истек очередной 3 -х секундный интервал времени; буфер журнала в SGA заполнен на одну треть своей емкости; процесс dbwr записал на диск очередную порцию модифицированных буферов.

    Процессы экземпляра Oracle 4. smon – обязательный процесс системного мониторинга выполняет: автоматическое восстановление (roll forward – накат вперед) базы данных, если ее предыдущий запуск завершился ненормально или аварийно; освобождение временных сегментов от ненужных данных; объединение смежных свободных экстентов табличных пространств в непрерывные участки. 5. arch – необязательный фоновый процесс архивирования файлов оперативных журналов регистрации изменений в базе данных. Место копирования (диск, лента, . . .) определяется параметром log_archive_dest в файле init. ora. Если процесс arch не успел заархивировать очередной журнальный файл (например, переполнена файловая система и не хватает места, чтобы разместить файл-архив), а требуется на него переключение, Oracle приостанавливает функционирование, выполняя только транзакции, не связанные с ведением журнала.

    Процессы экземпляра Oracle 6. ckpt – необязательный вспомогательный процесс записи контрольной точки в оперативный журнал фиксации изменений. Обычно контрольные точки записывает lgwr. Процесс ckpt (checkpoint_process = true в файле init. ora) лишь освобождает lgwr от этой функции. 7. reco – (полу) обязательный процесс, ответственный за связи с удаленными базами данных. Процесс reco можно не запускать (в init. ora параметр disributed_transaction = 0), но тогда экземпляр не сможет использовать ни одной "связи между базами данных". 8. snp. X – от одного до десяти процессов автоматического обновления снапшотов локальной базы. Количество задается в init. ora параметром snapshot_refresh_processes, а параметр snapshot_refresh_interval определяет регулярность их включения. Процессы snp. X можно отнести к серверным, поскольку они, связываясь с другими (в частности с той же самой) базами данных, работают с пользовательской информацией в базе данных.

    Процессы экземпляра Oracle 9. db. XX – дополнительные процессы записи в базу данных. Если узким местом производительности базы является ввод/вывод, а база физически размещается на нескольких дисках, рекомендуется запустить несколько дополнительных процессов записи (в среднем, по одному на каждый отдельный диск). Количество дополнительных db. XX определяется параметром db_writers. 10. d. XXX – процессы диспетчеры в варианте архитектуры MTS с разделяемыми серверами. Количество функционирующих в данный момент диспетчеров зависит от напряженности работы Oracle, но не превышает заданного параметром mts_max_dispatchers числа. Каждый диспетчер обслуживает только конкретный сетевой или внутренний протокол. Например: mts_dispatchers="tcp, 1" mts_dispatchers="ipc, 1"

    Процессы экземпляра Oracle 11. s. XXX – процессы серверы в варианте архитектуры MTS с разделяемыми серверами. Количество функционирующих в данный момент серверов зависит от напряженности работы Oracle, но не превышает заданного параметром mts_max_servers числа. Стартуя, Oracle запускает несколько (mts_servers) сервер-процессов, а затем то мере возрастания или снижения нагрузки запускает или завершает дополнительные процессы. 12. oracle – выделенный процесс сервера, индивидуально обслуживающий какой-то пользовательский (в частном случае и процесс snp) процесс, вполне возможно функционирующий на другой машине. 13. loc. X – от одного до десяти процессов блокировок, обеспечивающих взаимное управление ресурсами в среде параллельного сервера.

    Архитектуры серверов Oracle Однопользовательский вариант (пример среды – MS DOS) характеризуется тем, что: происходит объединение пользовательского процесса, процесса сервера и фоновых процессов в рамки одной задачи операционной системы; возможен запуск только одной базы данных и одного экземпляра Oracle; в распределенной базе данных не может функционировать в качестве сервера. Многопользовательский вариант (пример среды – UNIX) характеризуется тем, что: происходит разделение пользовательских, серверных и фоновых процессов на отдельные задачи операционной системы; есть возможность запуска нескольких баз данных и экземпляров Oracle; возможно функционирование в качестве сервера в распределенной БД.

    Архитектуры серверов Oracle Однозадачный вариант (пример среды – Net. Ware) характеризуется тем, что: пользовательский процесс и процесс сервера образуют единую задачу операционной системы, называемую задачей пользователя; в каждый момент времени на сервере может выполняться только одна задача пользователя; возможен доступ многих пользователей через Net 8 (SQL*Net) к базе данных. Двухзадачный вариант (пример среды – UNIX) характеризуется тем, что: пользовательский процесс и процесс обслуживающего сервера представляют собой полностью самостоятельные процессы операционной системы вплоть до того, что могут функционировать на разных машинах и платформах (архитектура "клиент-сервер"); в каждый момент времени на сервере может функционировать несколько (много) пользовательских и серверных процессов; возможен доступ многих пользователей через Net 8 (SQL*Net) к локальным базам данных и локальных пользователей к удаленным базам данных.

    Архитектуры серверов Oracle Однонитевая архитектура, или вариант с выделенными (Dedicated) серверами: жесткое закрепление за каждым пользовательским процессом процесса сервера, который выполняет его и только его запросы к базе данных. Параллельный сервер (среда – кластерные системы, например, RM-1000): на каждом процессоре кластера функционирует свой экземпляр Oracle, включающий отдельную область SGA и набор системных процессов; каждый экземпляр ведет свои собственные журналы регистрации изменений; база данных и управляющие файлы являются общими для всех экземпляров; к каждому экземпляру возможно подключение многих пользователей; каждый экземпляр адресуем отдельно, и может самостоятельно работать как часть распределенной системы.

    Архитектуры серверов Oracle Многонитевая архитектура (MTS – Multi-Tread Server), вариант с разделяемыми серверами характеризуется: наличием процессов-диспетчеров, принимающих запросы от пользовательских процессов и возвращающих им результаты выполненных сервер-процессами запросов; наличием в SGA: одной входной очереди для всех сервер-процессов, в которую диспетчеры помещают заявки на обслуживание от пользователей; нескольких выходных очередей, закрепленных по одной за каждым процессом диспетчером, куда серверы помещают и откуда диспетчеры передают пользователям результаты выполнения запросов к базе данных; переносом в SGA экземпляра Oracle частных SQL-областей, ранее размещавшихся в PGA процессов серверов; динамическим изменением в зависимости от текущей нагрузки системы количества функционирующих диспетчеров и сервер-процессов; ни диспетчеры, ни серверы не закрепляются за какими-либо процессами пользователей: запросы обслуживаются по мере поступления; возможностью одновременного функционирования выделенных и разделяемых серверов.

    Похожие публикации