Ло ги че ская мо дель. Логическая модель данных. Понятие нормализации отношений. Иерархическая и сетевая модели данных были созданы почти на десять лет раньше реляционной модели данных, потому их связь с концепциями традиционной обработки файлов более оче

Логическая модель данных - описание объектов предметной области, их атрибутов и взаимосвязей между ними в том объеме, в котором они подлежат непосредственному хранению в базе данных системы.

Логическая модель строится в несколько этапов с постепенным приближением к оптимальному для данных условий варианту. Эффективность такой модели зависит от того, насколько близко она отображает изучаемую предметную область. К предметной области относятся объекты (документы, счета, операции над ними и пр.), а также характеристики данных объектов, их свойства, взаимодействие и взаимное влияние.

Таким образом, при построении логической модели данных сначала выявляются те объекты, которые интересуют пользователей проектируемой базы данных. Затем для каждого объекта формулируются характеристики и свойства, достаточно полно описывающие данный объект. Эти характеристики в дальнейшем будут отражены в базе данных как соответствующие поля.

Логическая модель данных строится в рамках одного из трех подходов к созданию баз данных. Выделяют следующие виды логических моделей базы данных:

Иерархическая;

Сетевая;

Реляционная.

Иерархическая модель представляет собой древовидную структуру, которая выражает связи подчинения нижнего уровня высшему. Это облегчает поиск информации в том случае, если запросы имеют такую же структуру.

Сетевая модель отличается от предыдущей наличием также и горизонтальных связей. Это усложняет как модель, так и саму базу данных и средства ее управления.

Реляционная модель представляет хранимую информацию в виде таблиц, над которыми возможно выполнение логических операций (операций реляционной алгебры). В настоящий момент этот вид моделей получил наибольшее распространение. Это связано со сравнительной простотой реализации, четкой определенностью отношений между объектами, простотой изменения структуры базы данных.

Описание пользователей и групп пользователей системы

Разрабатываемая информационно-справочная система может быть использована как сотрудниками кинотеатра, так и посетителями. Сотрудник кинотеатра может обеспечивать редактирование имеющейся информации об имеющихся фильмах, изменять график работы кинотеатра, включать вновь поступившие фильмы в репертуар кинотеатра; а посетитель может просматривать информацию о графике работы кинотеатра, стоимости билетов, фильмах на сегодня.

Модель предметной области

Одним из наиболее удобных инструментов унифицированного представления данных, независимого от реализующего его программного обеспечения, является модель "сущность-связь" (entity - relationship model, ER - model). Модель "сущность-связь" основывается на некой важной семантической информации о реальном мире и предназначена для логического представления данных. Она определяет значения данных в контексте их взаимосвязи с другими данными. Категории «сущность» и «связь» объявляются основополагающими, и разделение их производится на этапе создания конкретных представлений некоторой предметной области.

Каждая сущность принадлежит к некоторому классу, иначе говоря, ей соответствует некоторый тип. Между сущностями имеются связи, которые пользователь относит к определенному классу (типу). Таким образом, класс сущностей и класс связей определяют множества конкретных объектов и связей между ними. Некоторая сущность может принадлежать более чем к одному классу.

Совокупность сущностей и классов связей образует верхний уровень модели.

Сущности и связи описываются характерными для них атрибутами. Среди атрибутов какой-нибудь сущности или связи выделяется подсписок, значения атрибутов которого однозначно идентифицируют сущность или связь в пределах типа. Сущности, связи и атрибуты образуют нижний уровень модели.

Важным является тот факт, что из модели "сущность-связь" могут быть порождены все существующие модели данных (иерархическая, сетевая, реляционная, объектная), поэтому она является наиболее общей.

Модель «сущность-связь» представлена в Приложении Е.

Реляционная база данных состоит из нормализованных таблиц. В процессе загрузки и корректировки базы данных, для получения информации по запросам и вывода отчётов, а также для решения большинства задач необходим одновременный доступ к нескольким взаимосвязанным таблицам. Взаимосвязь между таблицами базы данных устанавливается реляционными соотношениями.

Связи, определенные в схеме данных, используются автоматически при разработке многотабличных форм, запросов, отчетов, существенно упрощая процесс их конструирования.

Программный продукт представлен проектом - Cinema, который имеет 4 связанных между собой таблицы:

Bilety - информация реализованных билетах;

Films - информация о всех имеющихся в кинотеатре фильмах;

Seansy - информация о времени проведения сеансов и стоимости билетов на эти сеансы;

Today - информация о фильмах, которые будут показаны на сегодняшний день.

Логическими уровень – это абстрактный взгляд на данные, на нем данные представляются так, как выглядят в реальном мире, и могут называться так, как они называются в реальном мире.

Объекты модели, представляемые на логическом уровне, называются сущностями и атрибутами . Логическая модель данных может быть построена на основе другой логической модели, например на основе модели процессов. Логическая модель данных является универсальной и никак не связана с конкретной реализацией СУБД.

Различают три уровня логической модели, отличающихся по глубине представления информации о данных:

    диаграмм сущность-связь (Entity Relationship Diagram, ERD);

    модель данных, основанная на ключах (Key Based model, KB);

    полная атрибутная модель (Fully Attributed model, FA).

Диаграмма сущность-связь представляет собой модель данных верхнего уровня. Она включает сущности и взаимосвязи, отражающие основные бизнес-правила предметной области. Такая диаграмма не слишком детализирована, в нее включаются основные сущности и связи между ними, которые удовлетворяют основным требованиям, предъявляемым к ИС.

Диаграмма сущность-связь может включать связи многие-ко-многим и не включать описание ключей. Как правило, ERD используется для презентаций и обсуждения структуры данных с экспертами предметной области.

Модель данных, основанная на ключах , - более подробное представление данных. Она включает описание всех сущностей и первичных ключей и предназначена для представления структуры данных и ключей, которые соответствуют предметной области.

Полная атрибутивная модель – наиболее детальное представление структуры данных: представляет данные в третьей нормальной форме ивключает все сущности, атрибуты и связи .

В данных методических указаниях будет рассмотрена модель данных, основанная на ключах.

Основные компоненты диаграммы ERwin – это сущности, атрибуты и связи.

Каждая сущность является множеством подобных индивидуальных объектов, называемых экземплярами. Каждый экземпляр индивидуален и должен отличаться от всех остальных экземпляров. Построение модели данных предполагает определение сущностей и атрибутов, т.е. необходимо определить, какая информация будет храниться в конкретной сущности или атрибуте.Сущность можно определить как объект, событие или концепцию, информация о которой должна сохраняться. Сущности должны иметь наименование с четким смысловым значением, именоваться существительным в единственном числе, не носить «технических» наименований и быть достаточно значимыми для того, чтобы их моделировать. Именование сущности в единственном числе облегчает в дальнейшем чтение модели. Фактически имя сущности дается по имени ее экземпляра.

Сущность на диаграмме изображается прямоугольником. В зависимости от режима представления диаграммы прямоугольник может содержать имя сущности, ее описание, список ее атрибутов и другие сведения (см. рис. 34).

Рис. 34. Сущность с заполненными атрибутами.

Экземпляры независимой сущности могут быть уникально идентифицированы без определения ее связей с другими сущностями;зависимая сущность, наоборот, не может быть уникально идентифицирована без определения ее связей с другими сущностями. Зависимая сущность отображается в ERwin прямоугольником с закругленными углами (см. рис. 35).

Рис. 35. Зависимая сущность с заполненными атрибутами.

Зависимая сущность может наследовать один и тот же внешний ключ от более чем одной родительской сущности, или от одной и той же родительской сущности через использование несколько связей. Если не введены различные роли для такого множественного наследования, ERwin считает, что в зависимой сущности атрибуты внешнего ключа появляются только один раз.

В зависимости от того, все ли возможные сущности-подтипы включены в модель, категорийная связь является полной или неполной. Например, если супертип может содержать данные об уволенных сотрудниках, то эта связь - неполной категоризации, так как для него не существует записи в сущностях - подтипах. В ERwin полная категория изображается окружностью с двумя подчеркиваниями, а неполная - окружностью с одним подчеркиванием.

Унификация - это объединение двух или более групп атрибутов внешних ключей в один внешний ключ (группу атрибутов), в предположении, что значения одноименных атрибутов в дочерней сущности всегда одинаковы. Рассмотрим пример: сущность "сотрудник" имеет первичный ключ "код сотрудника" и связан идентифицирующей связью с сущностями "супруга" и "дети". При этом происходит миграция первичного ключа в зависимые сущности. В свою очередь, сущность "супруга" связана не идентифицирующей связью с сущностью "дети". Имеются два пути миграции ключа, однако в сущности "дети" атрибут "код сотрудника" появляется один раз в качестве элемента первичного ключа. Существуют случаи, когда унификация атрибутов дает неверный с точки зрения предметной области результат. Для отмены унификации для атрибутов вводятся имена ролей.

Атрибут выражает свойство объекта, характеризующее его экземпляр (определенное свойство объекта. С точки зрения БД (физическая модель) сущности соответствует таблица, экземпляру сущности – строка в таблице, а атрибуту – колонка таблицы. Горизонтальная линия прямоугольника разделяет атрибуты сущности на два набора: атрибуты, составляющие первичный ключ (в верхней части) и прочие, не входящие в первичный ключ (в нижней части).

Первичный ключ - это атрибут или набор атрибутов, уникально идентифицирующий экземпляр сущности. Если несколько наборов атрибутов могут уникально идентифицировать сущность, то выбор одного из них осуществляется разработчиком на основании анализа предметной области. Для каждого первичного ключа ERwin создает при генерации структуры БД уникальный индекс.

Если между некоторыми сущностями существует связь, то факты из одной сущности ссылаются или некоторым образом связаны с фактами из другой сущности. Связь – это функциональная зависимость между сущностями. Поддержание непротиворечивости функциональных зависимостей между сущностями называется ссылочной целостностью. Поскольку связи содержатся "внутри" реляционной модели, реализация ссылочной целостности может выполняться как приложением, так и самой СУБД (с помощью механизмов декларативной ссылочной целостности, триггеров). Связь это понятие логического уровня, которому соответствует внешний ключ на физическом уровне. Связь называетсяидентифицирующей , если экземпляр дочерней сущности идентифицируется через ее связь с родительской сущностью. Атрибуты, составляющие первичный ключ родительской сущности, при этом входят в первичный ключ дочерней сущности. Дочерняя сущность при идентифицирующей связи всегда является зависимой. Связь называетсяне идентифицирующей , если экземпляр дочерней сущности идентифицируется иначе, чем через связь с родительской сущностью. Атрибуты, составляющие первичный ключ родительской сущности, при этом входят в состав не ключевых атрибутов дочерней сущности.

Для добавления сущности следует нажать кнопку , а затем – щелкнуть «мышью» по свободному месту диаграммы. После этого по созданному элементу

следует щелкнуть два раза левой кнопкой «мыши». В открывшемся диалоговом окне Attributes (см. рис. 36) следует:

Рис. 36. Окно для заполнения атрибутов сущности.

Таблица 5.

Расшифровка назначения типов атрибутов

Для каждого атрибута имеется возможность ввода дополнительных характеристик, расположенных на вкладках окна Attributes :

    General (основные характеристики атрибута);

    Datatype (выбранный формат атрибута);

    Definition (пояснения);

    Note (комментарий для данного атрибута);

    UDP (свойства атрибутов сущности, добавляемых пользователем);

    Key Group (отношение выбранного атрибута к ключевым признакам);

    History (история возникновения атрибута).

Для связывания таблиц следует, нажав кнопку или(идентифицирующая связь) или(не идентифицирующая связь), щелкнуть левой кнопкой «мыши» на одной таблице, а затем щелкнуть «мышью» на другой таблице, с которой требуется выполнить связь.

Пример логической модели данных представлен на рис. 37.

Для компактного расположения модели на листе бумаги при печати следует вызвать в меню File режимPrint , а в открывшемся окнеPrint (см. рис. 38) нажать кнопкуFit model.

Рис. 37. Пример логической модели данных

Рис. 38. Окно для настройки параметров печати.

При выполнении основных функций СУБД должна использовать различные описания данных. Рассмотрим порядок создания этих описаний.

При разработке базы данных (ИС) обычно выделяется несколько уровней моделирования, при помощи которых происходит переход от предметной области к конкретной реализации базы данных средствами конкретной СУБД. Можно выделить следующие уровни: сама предметная область, концептуальная модель предметной области, логическая модель данных, физическая модель данных, собственно база данных и приложения.

Предметная область - это часть реального мира, данные о которой мы хотим отразить в базе данных. Например, в качестве предметной области можно выбрать бухгалтерию какого-либо предприятия, отдел кадров, банк, магазин и т.д. Предметная область бесконечна и содержит как существенно важные понятия и данные, так и малозначащие или вообще не значащие данные. Так, если в качестве предметной области выбрать учет товаров на складе, то понятия "накладная" и "счет-фактура" являются существенно важными понятиями, а то, что сотрудница, принимающая накладные, имеет двоих детей - это для учета товаров неважно. Однако, с точки зрения отдела кадров данные о наличии детей являются существенно важными. Таким образом, важность данных зависит от выбора предметной области.

Концептуальная модель предметной области

Концептуальная модель предметной области - это наши знания о предметной области в виде понятий (концептов). Знания могут быть как в виде неформальных знаний в мозгу эксперта, так и выражены формально при помощи каких-либо средств. В качестве таких средств могут выступать текстовые описания предметной области, наборы должностных инструкций, правила ведения дел в компании и т.п. Опыт показывает, что текстовый способ представления модели предметной области крайне неэффективен. Гораздо более информативными и полезными при разработке баз данных являются описания предметной области, выполненные при помощи специализированных графических нотаций. Имеется большое количество методик описания предметной области. Концептуальная модель БД - отражает информационное содержание данных, как основных понятий и отношений между ними. Концептуальная модель не затрагивает физического состояния данных, в том числе архитектуры данных, методов доступа, форматов физических данных.

На рис. 7 приведен фрагмент концептуальной модели предметной области "Предприятие".

Рисунок 7 - Концептуальная модель ИС "Предприятие"

Из наиболее известных методик исследования предметных областей и построения концептуальных моделей можно назвать системный анализ. Также существует целый ряд методик, учитывающих принципы системного анализа, - методика структурного анализа SADT и основанная на нем IDEF0, диаграммы потоков данных Гейна-Сарсона, методика объектно-ориентированного анализа UML, и др. Концептуальная модель предметной области описывает скорее процессы, происходящие в предметной области и данные, используемые этими процессами. От того, насколько правильно смоделирована предметная область, зависит успех дальнейшей разработки приложений.

Модель данных - инструментарий для отображения предметной области, определяется:

Допустимой организацией данных;

Ограничениями целостности (семантикой);

Множеством операций, допустимых над объектами модели данных.

Логическая модель данных

На следующем, более низком уровне находится логическая модель данных предметной области.

Логическая модель описывает понятия предметной области, их взаимосвязь, а также ограничения на данные, налагаемые предметной областью. Примеры понятий - "сотрудник", "отдел", "проект", "зарплата". Примеры взаимосвязей между понятиями - "сотрудник числится ровно в одном отделе", "сотрудник может выполнять несколько проектов", "над одним проектом может работать несколько сотрудников". Примеры ограничений - "возраст сотрудника не менее 16 и не более 60 лет".

Можно выделить три основные виде логических моделей:

Иерархическую модель;

Сетевую модель;

Реляционную модель.

Логическая модель данных для СУБД реляционного типа представляет собой схему базы данных, приведенную на рисунке 8

Рисунок 8 - Пример логической модели данных

Логическая модель данных является начальным прототипом будущей базы данных. Логическая модель строится в терминах информационных единиц, но без привязки к конкретной СУБД . Предварительным средством разработки логической модели данных в настоящий момент являются различные варианты инфологических (информационно-логических) моделей - ER- диаграмма (Entity-Relationship , диаграммы сущность-связь ). Одну и ту же ER-модель можно преобразовать как в реляционную модель данных, так и в модель данных для иерархических и сетевых СУБД, или в постреляционную модель данных.

Решения, принятые на предыдущем уровне, при разработке инфологической модели предметной области, определяют некоторые границы, в пределах которых можно развивать логическую модель данных, в пределах же этих границ можно принимать различные решения.

Для логической модели данных характерно то, что выполняя все основные требования, предъявляемые СУБД, не поддерживается ориентация на конкретную СУБД, что реализуется в физической модели данных.

Физическая модель данных

На еще более низком уровне находится физическая модель данных.

Физическая модель данных описывает данные средствами конкретной СУБД. Ограничения, имеющиеся в логической модели данных, реализуются различными средствами СУБД, например, при помощи индексов, декларативных ограничений целостности, триггеров, хранимых процедур. При этом опять-таки решения, принятые на уровне логического моделирования определяют некоторые границы, в пределах которых можно развивать физическую модель данных. Точно также, в пределах этих границ можно принимать различные решения. Например, отношения, содержащиеся в логической модели данных, должны быть преобразованы в таблицы, но для каждой таблицы можно дополнительно объявить различные индексы, повышающие скорость обращения к данным. Многое тут зависит от конкретной СУБД.

Если физическая модель данных реализована средствами реляционной СУБД, то отношения, разработанные на стадии формирования логической модели данных, преобразуются в таблицы, атрибуты становятся столбцами таблиц, для ключевых атрибутов создаются уникальные индексы, домены преображаются в типы данных, принятые в конкретной СУБД.

Собственно база данных и информационная система. И, наконец, как результат предыдущих этапов появляется собственно сама база данных. База данных реализована на конкретной программно-аппаратной основе, и выбор этой основы позволяет существенно повысить скорость работы с базой данных. Например, можно выбирать различные типы компьютеров, менять количество процессоров, объем оперативной памяти, дисковые подсистемы и т.п. Очень большое значение имеет также настройка СУБД в пределах выбранной программно-аппаратной платформы.

Но опять решения, принятые на предыдущем уровне - уровне физического проектирования, определяют границы, в пределах которых можно принимать решения по выбору программно-аппаратной платформы и настройки СУБД. Таким образом, ясно, что решения, принятые на каждом этапе моделирования и разработки базы данных, будут сказываться на дальнейших этапах. Поэтому особую роль играет принятие правильных решений на ранних этапах моделирования.

Качество разработанной БД всецело зависит от качества выполнения отдельных этапов ее проектирования. Огромное значение имеет качественная разработка логической модели данных, так как она, с одной стороны, обеспечивает адекватность базы данных предметной области, а с другой стороны, определяет структуру физической БД и, следовательно, ее эксплуатационные характеристики.

Одни и те же данные могут группироваться в таблицы-отношения различными способами, т.е. возможна организация различных наборов отношений взаимосвязанных информационных объектов предметной области. Группировка атрибутов в отношениях должна быть рациональной, предельно сокращающей дублирование данных и упрощающей процедуры их обработки и обновления.

Определенный набор отношений обладает лучшими свойствами при включении, модификации и удалении данных, если он отвечает конкретным требованиям нормализации отношений.

Нормализация отношений – формальный аппарат ограничений на их формирование, который позволяет устранить дублирование данных, обеспечить их непротиворечивость и уменьшить затраты на поддержание БД.

На практике наиболее часто используются понятия первой, второй и третьей нормальных форм.

Отношение называется нормализованным или приведенным к первой нормальной форме (1НФ), если все его атрибуты простые или атомарные (далее – неделимые). Отношение, находящееся в первой нормальной форме, будет иметь следующие свойства:

■ в отношении нет одинаковых кортежей;

■ кортежи не упорядочены;

■ атрибуты не упорядочены и различаются по наименованиям;

■ все значения атрибутов атомарные.

Как видно из перечисленных свойств, любое отношение автоматически находится в первой нормальной форме.

Легко показывается, что первая нормальная форма допускает хранение в одном отношении разнородной информации, избыточности данных, приводящих к неадекватности логической модели данных предметной области. Таким образом, первой нормальной формы недостаточно для правильного моделирования данных.

Чтобы рассмотреть вопрос приведения отношений ко второй нормальной форме, необходимо дать пояснение понятию функциональной зависимости.

Пусть имеется отношение R. Множество атрибутов У функционально зависимо от множества атрибутов X, если для любого состояния отношения R для любых кортежейиз того, чтоследует, что, т.е. во всех кортежах, имеющих одинаковые значения атрибутов X, значения атрибутов У также совпадают в любом состоянии отношения R.

Множество атрибутов X называется детерминантом функциональной зависимости , а множество атрибутов У – зависимой частью.

На практике эти зависимости отражают взаимосвязи, обнаруженные между объектами предметной области, и являются дополнительными ограничениями, определяемыми предметной областью. Таким образом, функциональная зависимость – семантическое понятие. Она возникает, когда по значениям одних данных в предметной области можно определить значения других данных. Например, зная табельный номер сотрудника, можно определить его фамилию. Функциональная зависимость задает дополнительные ограничения на данные, которые могут храниться в отношениях. Для корректности БД необходимо при выполнении операций модификации базы проверять все ограничения, определенные функциональными зависимостями.

Функциональная зависимость атрибутов отношения напоминает понятие зависимости в математике. Функциональная зависимость в математике – это тройка объектов X, Y и f , где Х множество, представляющее область определения функции, Y – множество значений, а f – правило, согласно которому каждому элементу ставится в соответствие один и только один элемент В противоположность этому в отношениях значение зависимого атрибута может принимать различные непредсказуемые значения в различных состояниях БД, соответствующих различным состояниям предметной области. Например, изменение сотрудником фамилии при вступлении в законный брак приведет к тому, что при том же значении детерминанта, скажем табельного номера, значение зависимого аргумента будет другим.

Функциональная зависимость атрибутов утверждает лишь то, что для каждого конкретного состояния БД по значению одного атрибута можно однозначно определить значение другого атрибута. Конкретные же значения зависимой части могут быть различны в различных состояниях БД.

Отношение находится во второй нормальной форме (2НФ), если оно находится в первой нормальной форме (1НФ) и нет неключевых атрибутов, зависящих от части составного ключа.

Из определения 2НФ следует, что если потенциальный ключ является простым, то отношение автоматически находится во второй нормальной форме.

Однако отношения, приведенные ко второй нормальной форме, все-таки содержат разнородную информацию и требуют написания дополнительного программного кода в виде триггеров для корректной работы БД. Следующим шагом по улучшению качества отношений является приведение их к третьей нормальной форме.

Отношение находится в третьей нормальной форме (ЗНФ), если оно находится в 2НФ и все неключевые атрибуты взаимно независимы.

Реляционная модель данных, состоящая из отношений, приведенных к 3НФ, является адекватной модели предметной области и требует наличия только тех триггеров, которые поддерживают ссылочную целостность. Такие триггеры являются стандартными, и их разработка не требует больших усилий.

Таким образом, разработку логической модели реляционной БД можно представить как определение отношений, отображающих понятия предметной области, и приведение их к третьей нормальной форме.

Алгоритм разработки включает в себя три этапа.

Этап I. Приведение к 1НФ. Здесь необходимо определить и задать отношения, отображающие понятия предметной области. Все отношения автоматически находятся в 1НФ.

Этап II. Приведение к 2НФ. Если в некоторых отношениях обнаружена зависимость атрибутов от части сложного ключа, то следует провести их декомпозицию следующим образом: атрибуты, которые зависят от части сложного ключа, выносятся в отдельное отношение вместе с этой частью ключа, а в исходном отношении остаются все ключевые атрибуты.

. Ключ– сложный ключ.

– зависимость всех атрибутов от ключа отношения;

– зависимость некоторых атрибутов от части сложного ключа.

– оставшаяся часть исходного отношения;

– новое отношение.

Этап III. Приведение к 3НФ. Если в некоторых отношениях обнаружена зависимость одних неключевых атрибутов от других нсключевых атрибутов, то проводится декомпозиция этих отношений: неключевые атрибуты, которые зависят от других неключевых атрибутов,

образуют отдельное отношение. В новом отношении ключом становится детерминант функциональной зависимости.

Пусть, например, исходное отношение –. К – ключ.

Тогда функциональные зависимости имеют следующий вид:

После декомпозиции отношения получим:

На практике достаточно редко разработка логической модели БД производится по приведенному алгоритму. Чаще используют различные варианты ER-диаграмм, поддерживаемые соответствующими CASE-средствами. Основные понятия ER-диаграмм излагаются в стандартах IDEF1 и IDEF1X. Однако приведенный алгоритм полезен как иллюстрация проблем, которые могут возникать при определении на первых этапах проектирования слабо нормализованных отношений. Понимание этих проблем особенно важно при проведении модификаций и доработок БД, когда вводятся новые сущности, появляются новые зависимости и т.п.

Аннотация

В данной курсовой работе описывается проектирование базы данных центральной городской больницы и ее реализация в Oracle Datebase. Была представлена предметная область, разработаны концептуальная, логическая и физическая модели данных. Средствами Oracle Datebase созданы необходимые таблицы, запросы, отчеты. Курсовая работа состоит из.

Введение 3

1.Предметная область 4

2.Концептуальная модель 5

3.Логическая модель базы данных 7

4.Модель физической организации данных 9

5.Реализация баз данных в Oracle 9

6.Создание таблиц 10

7.Создание запросов 16

8.Заключение 27

Список литературы 28

Введение

База данных – это единое, вместительное хранилище разнообразных данных и описаний их структур, которое после своего определения, осуществляемого отдельно и независимо от приложений, используется одновременно многими приложениями.

Кроме данных база данных может содержать средства, позволяющие каждому из пользователей оперировать только теми данными, которые входят в его компетенцию. В результате взаимодействия данных, содержащихся в базе, с методами, доступными конкретным пользователям, образуется информация, которую они потребляют и на основании которой в пределах собственной компетенции производят ввод и редактирование данных

Целью данной курсовой работы является разработка и реализация базы данных для центральной больницы, что бы обеспечить хранение, накопление и предоставление информации о деятельности больницы. Создаваемая база данных предназначена в основном для автоматизации деятельности основных подразделений больницы.

Предметная область

Предметной областьюназывается часть реальной системы, представляющая интерес для данного исследования. При проектировании автоматизированных информационных систем предметная область отображается моделями данных нескольких уровней. Число уровней зависти от сложности решаемых задач, но в любом случае включает концептуальный и логический уровни.

В данной курсовой работе предметной областью является работа центральной больницы, которая занимается лечением больных. Организационная структура больницы состоит из двух отделов: регистратуры и приёмного покоя. В регистратуре проводятся записи на приём, выдаются направления, распределяют пациентов по палатам, фиксируют номера страховых полюсов. Приёмный покой, в свою очередь, ведет учет поступления и выписки, диагнозы пациентов, историю болезни.

База данных предназначена для хранения данных о больных, их размещении, выписываемых препаратах и о лечащих врачах.


Концептуальная модель

Первая фаза процесса проектирования базы данных заключается в создании для анализируемой части предприятия концептуальной модели данных.

Концептуальная модель - это модель предметной области. Компонентами модели являются объекты и взаимосвязи. Концептуальная модель служит, средством общения между различными пользователями и поэтому разрабатывается без учета особенностей физического представления данных. При проектировании концептуальной модели все усилия разработчика должны быть направлены в основном на структуризацию данных и выявление взаимосвязей между ними без рассмотрения особенностей реализации и вопросов эффективности обработки. Проектирование концептуальной модели основано на основе анализа решаемых на этом предприятии задач по обработке данных. Концептуальная модель включает описания объектов и их взаимосвязей, представляющих интерес в рассматриваемой предметной области. Взаимосвязи между объектами являются частью концептуальной модели и должны отображаться в базе данных. Взаимосвязь может охватывать любое число объектов. С другой стороны, каждый объект может участвовать в любом числе связей. Наряду с этим существуют взаимосвязи между атрибутами объекта. Различают взаимосвязи типа: "один к одному", "один ко многим", "многие ко многим".

Самой популярной моделью концептуального проектирования является модель «сущность-связь» (ER-модель), она относится к семантическим моделям.

Основными элементами модели являются сущности, связи между ними и их свойства (атрибуты).

Сущность – это класс однотипных объектов, информация о которых должна быть учтена в модели.

Каждая сущность должна иметь наименование, выраженное существительным в единственном числе. Каждая сущность в модели изображается в виде прямоугольника с наименованием.

Атрибут – характеристика (параметр) не которой сущности.

Домен – множество значений (область определения атрибутов).

У сущностей выделяются ключевые атрибуты – ключ сущности – это один или более атрибутов, уникально определяющих данную сущность.

Набор сущностей для центральной больницы (в скобках указаны атрибуты сущностей, подчёркнуты ключевые атрибуты):

ПАЦИЕНТЫ (Код пациента , фамилия, имя, дата рождения, номер страхового полиса, код отделения);

ЛЕЧЕНИЕ (Код больного , диагноз, дата выписки, код врача, стоимость);

ОТДЕЛЕНИЯ(Код отделения , название отделения, количество палат);

ПОСТУПЛЕНИЯ (Код больного, дата поступления, код палаты);

ПАЛАТЫ (Код палаты , кол-во мест, код отделения);

ВРАЧИ (Код врача, фамилия, имя, дата рождения, номер личного дела, код отделения);

Диаграмма «сущность-связь» для районной больницы изображена на рисунке 1.


Логическая модель базы данных

Версия концептуальной модели, которая может быть обеспечена конкретной СУБД, называется логической моделью. Процесс построения логической модели базы данных должен опираться на определённую модель данных (реляционная, сетевая, иерархическая), которая определяется типом предполагаемой для реализации информационной системы СУБД. В нашем случае база данных создается в среде Oracle и будет представлять собой реляционную базу данных.

Реляционная модель характеризуется своей простотой структуры данных, удобным для пользователя табличным представлением и возможностью использования формального аппарата алгебры отношений и реляционного исчисления для манипулирования данными..

В реляционных моделях данных объекты и взаимосвязи между ними представляются с помощью таблиц. Каждая таблица представляет один объект и состоит из строк и столбцов. Таблица в реляционной модели называется отношением.

Атрибут (поле) – любой столбец в таблице.

Кортежи (записи) – строки таблицы.

Таблицы связаны между собой при помощи ключевых полей.

Ключ – это поле, позволяющее однозначно идентифицировать запись в таблице. Ключ может быть простым (состоит из одного поля) или составным (из нескольких полей).

В реляционных базах данных логическое проектирование приводит к разработке схемы данных, которая представлена на рисунке 2.

Рис.2.
4. Модель физической организации данных

Физическая модель данных описывает то, как данные хранятся в компьютере, представляя информацию о структуре записей, их упорядоченности и существующих путях доступа.

В физической модели описываются типы, идентификаторы и разрядность полей. Физическая модель данных отражает физическое размещение данных на машинных носителях, то есть какой файл, какие объекты, с какими атрибутами содержит и каковы типы этих атрибутов.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-26

Похожие публикации