Как работает цап. Аналого-цифровое преобразование для начинающих

Аналоговые сигналы характеризуются многими техническими параметрами, одним из которых является Например, ухо человека слышит сигналы, имеющие частоту в диапазоне от 1 до 22 кГц, а видимый свет содержит частоты, измеряемые миллиардами герц. Примером записи аналогового сигнала может служить граммофонная пластинка. Фотографии, вначале черно-белые, а, затем, и цветные - тоже пример записи аналогового сигнала.

Практически всегда стоит после о котором полезно сказать несколько слов, чтобы была понятней задача, которую решают рассматриваемые нами устройства.

АЦП преобразует в цифровой. Обычно число, которое соответствует величине сигнала в момент его измерения, представляют двоичным кодом. Каждое измерение выполняют с определенной частотой, называемой частотой квантования.

Теоретически обоснована минимальная частота квантования, обеспечивающая неискаженное восстановление сигнала. Этот сигнал без искажения и должен восстановить на выходе преобразователь цифрового сигнала в аналоговый. Частота квантования должна быть не меньше двух максимальных частот преобразуемого сигнала. Например, для неискаженного преобразования звукового сигнала достаточно частоты квантования, равной 44 кГц.

Теперь понятно, что имеет на входе последовательность двоичных кодов, который он и должен преобразовать в соответствующий аналоговый сигнал.

Надежность в работе и срок службы также входят в показатели, но эти параметры зависят не от принципа работы ЦАП, а, скорее, от элементной базы и качества сборки. Независимо от принципа преобразования, цифро-аналоговые преобразователи различают по характеристикам, таким как динамический диапазон, точность преобразования и по временным показателям.

Динамический диапазон определяют для входа и выхода ЦАП, как отношение максимальной величины на входе (на выходе), к минимальной входной (выходной) величине.

Одним из временных параметров является величина, обратная частоте квантования, называемая периодом квантования. Понятно, что для ЦАП эту величину задает АЦП, с помощью которого сигнал был преобразован.

Основной же величиной, характеризующей быстродействие ЦАП, является время преобразования. Здесь приходится выбирать: большее время преобразования - более точный ЦАП, но меньше его быстродействие, и наоборот.

Рассмотрим некоторые принципы преобразования «цифра-аналог», не приводя формул и схем. Существует два принципа преобразования - последовательный и параллельный.

Последовательность цифровых кодов на входе цифро-аналоговый преобразователь преобразует в последовательность прямоугольных импульсов на выходе. Ширину импульса и последующий за ним интервал до очередного импульса определяют в зависимости от значения поступившего двоичного кода. Следовательно, на выходе низкочастотного фильтра получают аналоговый сигнал, по импульсам, поступающим на вход с переменным периодом.

Параллельное преобразование выполняют, например, с помощью сопротивлений, включенных параллельно к стабильному источнику питания. Количество сопротивлений равно разрядности поступающего на вход кода. Величина сопротивления в старшем разряде в 2 раза меньше, чем в предшествующем младшем разряде. В цепи каждого сопротивления имеется ключ. Входной код управляет ключами - там, где 1, ток проходит. Следовательно, в цепях ток будет определяться весом разряда, и цифро-аналоговый преобразователь на выходе имеет суммарный ток, который будет соответствовать записанному двоичному коду.

Между дискретным цифровым миром и аналоговыми сигналами.

Энциклопедичный YouTube

    1 / 3

    ✪ Лекция 26. Цифро-аналоговый преобразователь R-2R

    ✪ Параллельный АЦП ЦАП

    ✪ Цифро-аналоговый преобразователь

    Субтитры

Применение

ЦАП применяется всегда, когда надо преобразовать сигнал из цифрового представления в аналоговое, например, в проигрывателях компакт-дисков (Audio CD).

Типы ЦАП

Наиболее общие типы электронных ЦАП:

  • Широтно-импульсный модулятор - простейший тип ЦАП. Стабильный источник тока или напряжения периодически включается на время, пропорциональное преобразуемому цифровому коду, далее полученная импульсная последовательность фильтруется аналоговым фильтром нижних частот . Такой способ часто используется для управления скоростью электромоторов, а также становится популярным в Hi-Fi -аудиотехнике;
  • ЦАП передискретизации , такие, как дельта-сигма -ЦАП, основаны на изменяемой плотности импульсов. Передискретизация позволяет использовать ЦАП с меньшей разрядностью для достижения большей разрядности итогового преобразования; часто дельта-сигма ЦАП строится на основе простейшего однобитного ЦАП, который является практически линейным. На ЦАП малой разрядности поступает импульсный сигнал с модулированной плотностью импульсов (c постоянной длительностью импульса, но с изменяемой скважностью), создаваемый с использованием отрицательной обратной связи . Отрицательная обратная связь выступает в роли фильтра верхних частот для шума квантования .
Большинство ЦАП большой разрядности (более 16 бит) построены на этом принципе вследствие его высокой линейности и низкой стоимости. Быстродействие дельта-сигма ЦАП достигает сотни тысяч отсчётов в секунду, разрядность - до 24 бит. Для генерации сигнала с модулированной плотностью импульсов может быть использован простой дельта-сигма модулятор первого порядка или более высокого порядка как MASH (англ. Multi stage noise SHaping ). С увеличением частоты передискретизации смягчаются требования, предъявляемые к выходному фильтру низких частот, и улучшается подавление шума квантования;
  • ЦАП взвешивающего типа , в котором каждому биту преобразуемого двоичного кода соответствует резистор или источник тока, подключённый на общую точку суммирования. Сила тока источника (проводимость резистора) пропорциональна весу бита, которому он соответствует. Таким образом, все ненулевые биты кода суммируются с весом. Взвешивающий метод один из самых быстрых, но ему свойственна низкая точность из-за необходимости наличия набора множества различных прецизионных источников или резисторов и непостоянного импеданса . По этой причине взвешивающие ЦАП имеют разрядность не более восьми бит;

Характеристики

ЦАП находятся в начале аналогового тракта любой системы, поэтому параметры ЦАП во многом определяют параметры всей системы в целом. Далее перечислены наиболее важные характеристики ЦАП.

  • Максимальная частота дискретизации - максимальная частота, на которой ЦАП может работать, выдавая на выходе корректный результат. В соответствии с теоремой Котельникова , для корректного воспроизведения аналогового сигнала из цифровой формы необходимо, чтобы частота дискретизации была не менее, чем удвоенная максимальная частота в спектре сигнала. Например, для воспроизведения всего слышимого человеком звукового диапазона частот, спектр которого простирается до 20 кГц, необходимо, чтобы звуковой сигнал был дискретизован с частотой не менее 40 кГц. Стандарт Audio CD устанавливает частоту дискретизации звукового сигнала 44,1 кГц; для воспроизведения данного сигнала понадобится ЦАП, способный работать на этой частоте. В дешёвых компьютерных звуковых картах частота дискретизации составляет 48 кГц. Сигналы, дискретизованные на других частотах, подвергаются передискретизации до 48 кГц, что частично ухудшает качество сигнала.
  • Статические характеристики:
    • DNL (дифференциальная нелинейность) - характеризует, насколько приращение аналогового сигнала, полученное при увеличении кода на 1 младший значащий разряд (МЗР), отличается от правильного значения;
    • INL (интегральная нелинейность) - характеризует, насколько передаточная характеристика ЦАП отличается от идеальной. Идеальная характеристика строго линейна; INL показывает, насколько напряжение на выходе ЦАП при заданном коде отстоит от линейной характеристики; выражается в МЗР;
    • усиление;
    • смещение.
  • Частотные характеристики:
    • SNDR (отношение сигнал/шум +искажения) - характеризует в децибелах отношение мощности выходного сигнала к суммарной мощности шума и гармонических искажений;
    • HDi (коэффициент i-й гармоники) - характеризует отношение i-й гармоники к основной гармонике;
    • THD (коэффициент гармонических искажений) - отношение суммарной мощности всех гармоник (кроме первой) к мощности первой гармоники.

Цифро-аналоговый преобразователь (ЦАП) - это устройство для преобразования цифрового кода в аналоговый сигнал по величине, пропорциональной значению кода.

ЦАП применяются для связи цифровых управляющих систем с устройствами, которые управляются уровнем аналогового сигнала. Также, ЦАП является составной частью во многих структурах аналого-цифровых устройств и преобразователей.

ЦАП характеризуется функцией преобразования. Она связывает изменение цифрового кода с изменением напряжения или тока. Функция преобразования ЦАП выражается следующим образом

U вых - значение выходного напряжения, соответствующее цифровому коду N вх , подаваемому на входы ЦАП.

U мах - максимальное выходное напряжение, соответствующее подаче на входы максимального кода N мах

Величину К цап , определяемую отношением , называют коэффициентом цифроаналогового преобразования. Несмотря на ступенчатый вид характеристики, связанный с дискретным изменением входной величины (цифрового кода), считается, что ЦАП являются линейными преобразователями.

Если величину N вх представить через значения весов его разрядов, функцию преобразования можно выразить следующим образом

, где

i - номер разряда входного кода N вх ; A i - значение i -го разряда (ноль или единица); U i – вес i -го разряда; n – количество разрядов входного кода (число разрядов ЦАП).

Вес разряда определяется для конкретной разрядности, и вычисляется по следующей формуле

U ОП -опорное напряжение ЦАП

Принцип работы большинства ЦАП - этосуммирование долей аналоговых сигналов (веса разряда), в зависимости от входного кода.

ЦАП можно реализовать с помощью суммирования токов, суммирования напряжений и деления напряжений. В первом и втором случае в соответствии со значениями разрядов входного кода, суммируются сигналы генераторов токов и источников Э.Д.С. Последний способ представляет собой управляемый кодом делитель напряжения. Два последних способа не нашли широкого распространения в связи с практическими трудностями их реализации.

Способы реализации ЦАП с взвешенным суммированием токов

Рассмотрим построение простейшего ЦАП с взвешенным суммированием токов.

Этот ЦАП состоит из набора резисторов и набора ключей. Число ключей и число резисторов равно количеству разрядов n входного кода. Номиналы резисторов выбираются в соответствии с двоичным законом. Если R=3 Ом, то 2R= 6 Ом, 4R=12 Ом, и так и далее, т.е. каждый последующий резистор больше предыдущего в 2 раза. При присоединении источника напряжения и замыкании ключей, через каждый резистор потечет ток. Значения токов по резисторам, благодаря соответствующему выбору их номиналов, тоже будут распределены по двоичному закону. При подаче входного кода N вх включение ключей производится в соответствии со значением соответствующих им разрядов входного кода. Ключ замыкается, если соответствующий ему разряд равен единице. При этом в узле суммируются токи, пропорциональные весам этих разрядов и величина вытекающего из узла тока в целом будет пропорциональна значению входного кода N вх .

Сопротивление резисторов матрицы выбирают достаточно большое (десятки кОм). Поэтому для большинства практических случаев для нагрузки ЦАП играет роль источника тока. Если на выходе преобразователя необходимо получить напряжение, то на выходе такого ЦАП устанавливается преобразователь "ток-напряжение", например, на операционном усилителе

Однако при смене кода на входах ЦАП меняется величина тока, отбираемая от источника опорного напряжения. Это является главным недостатком такого способа построения ЦАП. Такой метод построения можно использовать только в том случае, если источник опорного напряжения будет с низким внутренним сопротивлением. В другом случае в момент смены входного кода изменяется ток, отбираемый у источника, что приводит к изменению падения напряжения на его внутреннем сопротивлении и, в свою очередь, к дополнительному напрямую не связанному со сменой кода изменению выходного тока. Исключить этот недостаток позволяет структура ЦАП с переключающимися ключами

В такой структуре имеется два выходных узла. В зависимости от значения разрядов входного кода соответствующие им ключи подключаются к узлу, связанному с выходом устройства, или к другому узлу, который чаще всего заземляется. При этом через каждый резистор матрицы ток течет постоянно, независимо от положения ключа, а величина тока, потребляемого от источника опорного напряжения, постоянна.

Общим недостатком обеих рассмотренных структур является большое соотношение между наименьшим и наибольшим номиналом резисторов матрицы. Вместе с тем, не смотря на большую разницу номиналов резисторов необходимо обеспечивать одинаковую абсолютную точность подгонки как самого большого, так и самого маленького по номиналу резистора. В интегральном исполнении ЦАП при числе разрядов более 10 это обеспечить достаточно трудно.

От всех указанных выше недостатков свободны структуры на основе резистивных R-2R матриц

При таком построении резистивной матрицы ток в каждой последующей параллельной ветви меньше чем в предыдущей в два раза. Наличие только двух номиналов резисторов в матрице позволяет достаточно просто осуществлять подгонку их значений.

Выходной ток для каждой из представленных структур пропорционален одновременно не только величине входного кода, но и величине опорного напряжения. Часто говорят, что он пропорционален произведению этих двух величин. Поэтому такие ЦАП называют умножающими. Такими свойствами будут обладать все ЦАП, в которых формирование взвешенных значений токов, соответствующих весам разрядов, производится с помощью резистивных матриц.

Кроме использования по прямому назначению умножающие ЦАП используются как аналого-цифровые перемножители, в качестве кодоуправляемых сопротивлений и проводимостей. Они широко применяются как составные элементы при построении кодоуправляемых (перестраиваемых) усилителей, фильтров, источников опорных напряжений, формирователей сигналов и т.д.

Основные параметры и погрешности ЦАП

Основные параметры, которые можно увидеть в справочнике:

1. Число разрядов – количество разрядов входного кода.

2. Коэффициент преобразования – отношение приращения выходного сигнала к приращению входного сигнала для линейной функции преобразования.

3. Время установления выходного напряжения или тока – интервал времени от момента заданного изменения кода на входе ЦАП до момента, при котором выходное напряжение или ток окончательно войдут в зону шириной младшего значащего разряда (МЗР ).

4. Максимальная частота преобразования – наибольшая частота смены кода, при которой заданные параметры соответствуют установленным нормам.

Существуют и другие параметры, характеризующие исполнение ЦАП и особенности его функционирования. В их числе: входное напряжение низкого и высокого уровня, ток потребления, диапазон выходного напряжения или тока.

Важнейшими параметрами для ЦАП являются те, которые определяют его точностные характеристики.

Точностные характеристики каждого ЦАП, прежде всего, определяются нормированными по величине погрешностями.

Погрешности делятся на динамические и статические. Статическими погрешностями называются погрешности, остающиеся после завершения всех переходных процессов, связанных со сменой входного кода. Динамические погрешности определяются переходными процессами на выходе ЦАП, возникшими вследствие смены входного кода.

Основные типы статических погрешностей ЦАП:

Абсолютная погрешность преобразования в конечной точке шкалы – отклонение значения выходного напряжения (тока) от номинального значения, соответствующего конечной точке шкалы функции преобразования. Измеряется в единицах младшего разряда преобразования.

Напряжение смещения нуля на выходе – напряжение постоянного тока на выходе ЦАП при входном коде, соответствующем нулевому значению выходного напряжения. Измеряется в единицах младшего разряда. Погрешность коэффициента преобразования (масштабная) –связанная с отклонением наклона функции преобразования от требуемого.

Нелинейность ЦАП – отклонение действительной функции преобразования от оговоренной прямой линии. Является самой плохой погрешностью с которой трудно бороться.

Погрешности нелинейности в общем случае разделяют на два типа – интегральные и дифференциальные.

Погрешность интегральной нелинейности – максимальное отклонение реальной характеристики от идеальной. Фактически при этом рассматривается усредненная функция преобразования. Определяют эту погрешность в процентах от конечного диапазона выходной величины.

Дифференциальная нелинейность связана с неточностью задания весов разрядов, т.е. с погрешностями элементов делителя, разбросом остаточных параметров ключевых элементов, генераторов токов и т.д.

Способы идентификации и коррекции погрешностей ЦАП

Желательно, чтобы коррекция погрешностей производилось при изготовлении преобразователей (технологическая подгонка). Однако, часто она желательна и при использовании конкретного образца БИС в том или ином устройстве. В этом случае коррекция проводится введением в структуру устройства кроме БИС ЦАП дополнительных элементов. Такие методы получили название структурных.

Самым сложным процессом является обеспечение линейности, так как они определяются связанными параметрами многих элементов и узлов. Чаще всего осуществляют подгонку только смещения нуля, коэффициента

Точностные параметры, обеспечиваемые технологическими приемами, ухудшаются при воздействии на преобразователь различных дестабилизирующих факторов, в первую очередь – температуры. Необходимо помнить и о факторе старения элементов.

Погрешность смещения нуля и масштабная погрешность легко корректируются на выходе ЦАП. Для этого в выходной сигнал вводят постоянное смещение, компенсирующее смещение характеристики преобразователя. Необходимый масштаб преобразования устанавливают, либо корректируя коэффициент усиления, устанавливаемого на выходе преобразователя усилителя, либо подстраивая величину опорного напряжения, если ЦАП является умножающим.

Методы коррекции с тестовым контролем заключаются в идентификации погрешностей ЦАП на всем множестве допустимых входных воздействий и добавлением, рассчитанных на основе этого поправок, к входной или выходной величине для компенсации этих погрешностей.

При любом методе коррекции с контролем по тестовому сигналу предусматриваются следующие действия:

1. Измерение характеристики ЦАП на достаточном для идентификации погрешностей множестве тестовых воздействий.

2. Идентификация погрешностей вычислением их отклонений по результатам измерений.

3. Вычисление корректирующих поправок для преобразуемых величин или требуемых корректирующих воздействий на корректируемые блоки.

4. Проведение коррекции.

Контроль может проводиться один раз перед установкой преобразователя в устройство с помощью специального лабораторного измерительного оборудования. Может проводиться и с помощью специализированного оборудования встроенного в устройство. При этом контроль, как правило, проводится периодически, все то время пока преобразователь не участвует непосредственно в работе устройства. Такая организация контроля и коррекции преобразователей может осуществляться при его работе в составе микропроцессорной измерительной системы.

Основной недостаток любого метода сквозного контроля – большое время контроля наряду с разнородностью и большим объемом используемой аппаратуры.

Определенные тем или иным способом величины поправок хранятся, как правило, в цифровой форме. Коррекция же погрешностей с учетом этих поправок может проводиться как в аналоговой, так и цифровой форме.

При цифровой коррекции поправки добавляются с учетом их знака к входному коду ЦАП. В результате на вход ЦАП поступает код, при котором на его выходе формируется требуемое значение напряжения или тока. Наиболее простая реализация такого способа коррекции состоит из корректируемого ЦАП, на входе которого установлено цифровое запоминающее устройство (ЗУ) . Входной код играет роль адресного. В ЗУ по соответствующим адресам занесены, заранее рассчитанные с учетом поправок, значения кодов, подаваемые на корректируемый ЦАП.

При аналоговой коррекции кроме основного ЦАП используется еще один дополнительный ЦАП. Диапазон его выходного сигнала соответствует максимальной величине погрешности корректируемого ЦАП. Входной код одновременно поступает на входы корректируемого ЦАП и на адресные входы ЗУ поправок. Из ЗУ поправок выбирается соответствующая данному значению входного кода поправка. Код поправки преобразуется в пропорциональный ему сигнал, который суммируется с выходным сигналом корректируемого ЦАП. Ввиду малости требуемого диапазона выходного сигнала дополнительного ЦАП по сравнению с диапазоном выходного сигнала корректируемого ЦАП собственными погрешностями первого пренебрегают.

В ряде случаев возникает необходимость проведения коррекции динамики работы ЦАП.

Переходная характеристика ЦАП при смене различных кодовых комбинаций будет различной, иными словами – различным будет время установления выходного сигнала. Поэтому при использовании ЦАП необходимо учитывать максимальное время установления. Однако в ряде случаев удается корректировать поведение передаточной характеристики.

Особенности применения БИС ЦАП

Для успешного применения современных БИС ЦАП недостаточно знать перечень их основных характеристик и основные схемы их включения.

Существенное влияние на результаты применения БИС ЦАП оказывает выполнение эксплуатационных требований, обусловленных особенностями конкретной микросхемы. К таким требованиям относятся не только использование допустимых входных сигналов, напряжения источников питания, емкости и сопротивления нагрузки, но и выполнение очередности включения разных источников питания, разделение цепей подключения разных источников питания и общей шины, применение фильтров и т.д.

Для прецизионных ЦАП особое значение приобретает выходное напряжение шума. Особенность проблемы шума в ЦАП заключается в наличии на его выходе всплесков напряжения, вызванных переключением ключей внутри преобразователя. По амплитуде эти всплески могут достигать нескольких десятков значений весов МЗР и создавать трудности в работе следующих за ЦАП устройств обработки аналоговых сигналов. Решением проблемы подавления таких всплесков является использование на выходе ЦАП устройств выборки-хранения (УВХ ). УВХ управляется от цифровой части системы, формирующей новые кодовые комбинации на входе ЦАП. Перед подачей новой кодовой комбинации УВХ переводится в режим хранения, размыкая цепь передачи аналогового сигнала на выход. Благодаря этому всплеск выходного напряжения ЦАП не попадает на вывод УВХ , которое затем переводится в режим слежения, повторяя выходной сигнал ЦАП.

Специальное внимание при построении ЦАП на базе БИС необходимо уделять выбору операционного усилителя, служащего для преобразования выходного тока ЦАП в напряжение. При подаче входного кода ЦАП на выходе ОУ будет действовать ошибка D U , обусловленная его напряжением смещения и равная

,

где U см – напряжение смещения ОУ ; R ос – величина сопротивления в цепи обратной связи ОУ ; R м – сопротивление резистивной матрицы ЦАП (выходное сопротивление ЦАП), зависящее от величины поданного на его вход кода.

Поскольку отношение изменяется от 1 до 0, ошибка, обусловленная U см , изменяется в приделах (1...2)U см . Влиянием U см пренебрегают при использовании ОУ, у которого .

Вследствие большой площади транзисторных ключей в КМОП БИС существенная выходная емкость БИС ЦАП (40...120 пФ в зависимости от величины входного кода). Эта емкость оказывает существенное влияние на время установления выходного напряжения ОУ до требуемой точности. Для уменьшения этого влияния R ос шунтируют конденсатором С ос .

В ряде случаев на выходе ЦАП необходимо получать двуполярное выходное напряжение. Этого можно добиться введением на выходе смещения диапазона выходного напряжения, а для умножающих ЦАП переключением полярности источника опорного напряжения.

Следует обратить внимание, что если вы используете интегральный ЦАП, имеющий число разрядов большее чем вам нужно, то входы неиспользуемых разрядов подключают к земляной шине, однозначно определяя на них уровень логического нуля. Причем для того, чтобы работать по возможности с большим диапазоном выходного сигнала БИС ЦАП за таковые разряды принимают разряды, начиная с самого младшего.

Один из практических примеров применения ЦАП- это формирователи сигналов разной формы. Сделал небольшую модель в протеусе. С помощью ЦАП управляемого МК (Atmega8, хотя можно сделать и на Tiny), формируются сигналы различной формы. Программа написана на Си в CVAVR. По нажатию кнопки формируемый сигнал меняется.

БИС ЦАП DAC0808 National Semiconductor,8 –разрядный, высокоскоростной, включена согласно типовой схеме. Так как выход у него токовый, с помощью инвертирующего усилителя на ОУ преобразуется в напряжение.

В принципе можно даже вот такие интересные фигуры, что-то напоминает правда? Если выбрать разрядность по больше, то получится более плавные

Список литературы:
1. Бахтияров Г.Д., Малинин В.В., Школин В.П. Аналого-цифровые преобразователи/Под ред. Г.Д.Бахтиярова - М.: Сов. радио. – 1980. – 278 с.: ил.
2. Проектирование аналого-цифровых контрольно-управляющих микропроцессорных систем.
3. О.В. Шишов. - Саранск: Изд-во Мордов. ун-та 1995. - с.

Ниже вы можете скачать проект в

Давайте начнем с самого начала. Цифровая музыка является (легко переносится) промежуточной формой между аналоговым оригиналом и аналоговой копией. Идеальная звуковая система создает копию в конце, которая идентична оригиналу. На 100% этого еще не произошло, но в течение последних 20 лет мы все ближе и ближе к этому. Два важнейших компонента этого процесса являются — аналого-цифровой преобразователь (АЦП) для студии и цифро-аналоговый преобразователь (ЦАП) для . Начнем с рассмотрения процесса АЦП.

Работа АЦП — это неоднократное измерения амплитуды (громкости) входящей волны звука электрического давления (электрическое напряжение), и вывод этих измерений как длинный список бинарных байтов. Таким образом, математическая «картинка» создается от формы волны. Не беспокойтесь о битах и ​​байтах. Для наших целей, это просто цифры. Так что же, этот сигнал мы записываем и пытаемся воссоздать? Единая форма волны в нашем примере является аналогом или скопирована как результат на всех частотах от всех инструментов, которые произошли в воздухе в студии , и, естественно, объединенных в воздухе и пришли в одну точку микрофона в определенном порядке как один аналоговый звук естественным образом, который обрабатывается в нашей барабанной перепонке, чтобы услышать его.

Это несчетное большое количество частот от всех инструментов и их гармоник и полученных от отражений комнаты (звуковой сцены), естественно объединены в воздухе и, естественно, «закодированы» как комплекс , и является оригинальной правдой о музыке на тот момент который мы пытаемся точно скопировать. Теперь о цифровой и портативной сущности
Частота дискретизации была определена и АЦП сделала свое дело и данные теперь просто образовались в большой файл из чисел, впрочем, они могут быть изменены в бесчисленных форматах и ​​переносятся, копируются по всему миру и, наконец, представлены в вашей комнате для прослушивания, для вашего ЦАП. Бит будет идеальный если целостность файла будет сохранена, т.е. те же самые числовые значения, которые были созданы в АЦП — представлены вашему ЦАП. Если это так, то данные будут с идеальным . Воспроизведение ЦАП (DAC) ЦАП , читая цифровые данные из файла и пытается воссоздать копию оригинального аналогового сигнала, записанного когда-то.

Типы ЦАП и как они работают ЦАП — это схема, которая преобразует цифровые данные в непрерывный аналоговый электрический эквивалент звука, который должен быть воспроизведен на высококачественной аппаратуре или наушниках. Амплитуда представляет собой цифровой номер, который происходит на основе частоты дискретизации (например, 44 100 раз в секунду). Этот процесс очень похож на бесконечную конвейерную ленту с пустыми кувшинами на нем, движущихся по заправочной станции. Размер кувшина фиксируется, и со скоростью они проходят мимо, что и определяется частотой дискретизации. Цель заполнить каждый кувшин точно по уровню, указанного в музыке. Существуют три методики, используемые для достижения этой цели; Delta Sigma, Ladder, и MSB Sign Magnitude Ladder. ЦАП Delta Sigma (Один бит) Каждый образец или кувшин заполняется на нужном уровне со многими измерительными чашками, чтобы налить и достичь целевого .
«Один бит» - это мерный стаканчик либо полный, либо пустой. С 64 разовой передискретизацией, чашка только 1/64-й от объема кувшина. Это довольно плохая чашка и она не приблизилась к тому, чтобы быть достаточно точной. Чашка должна была бы быть 1 / 16,777,216 от объем кувшина, чтобы быть . Фильтрация здесь важна.

ЦАП Ladder (Лестница)

Ladder ЦАП отличается тем, что вместо одного мерного стакана (или бита), целый ряд чашек доступных, от очень маленьких, до очень . Любую комбинацию чашки можно использовать для заполнения каждого кувшина точно по . Фильтрация не требуется, но точность определяется совокупной погрешностью всех используемых чашек.

ЦАП MSB Sign Magnitude Ladder

MSB Sign Magnitude Ladder ЦАП как Ladder ЦАП, изысканный и обрабатывает двумя способами. Потому как чашки, как правило, на 1/2 полны, когда заканчивают, и начинают с очень точных 1/2 заполненных чашек вместо пустых. Оттуда мы снова используем широкий спектр измерительных чашек добавляя или отнимая по каждой чашке.
Так как каждый сосуд заполняется точно, фильтрация не нужна. Потому как наш слух наиболее чувствителен к звуку низкого уровня наш ЦАП является наиболее точным около 1/2 полным, где мы используем самые маленькие и самые точные измерения чашек. А как насчет передискретизации? Синхронное повышение дискретизации MSB просто означает добавление еще одной банки между существующими банками и перемещает их быстрее вниз на линию. Глядя на многие банки до и после новых пустых, рассчитывает, как полные. Заключительное слово о ЦАПах Оригинальный способ Sony и Philips заключается в преобразовании цифровой информации ЦАП Ladder (лестница), добавлением резисторов, что при подключении выглядели лестницей (отсюда и название). Но для Philips это было очень трудно построить, потому что было трудно получить резисторы достаточно точные, так как 1541ЦАП (DAC) был неточен. Но тем не менее, он звучал лучше, чем следующие поколения, Дельта Сигма ЦАП. ЦАП Ladder(Лестница) технически, привлекательна потому что это, как пассивный процесс (нулевой обработки любого вида, да, я знаю сам, преобразования является процессом), что означает, что нет никакого активного отбора проб и средних обработок, только простые резисторы, которые не имеют ограничения по скорости. MSB Ladder (лестница) является самым точным. Резистор быстрее — более 5 МГц. Он имеет уровень шума в 160 дБ. И это гораздо более точные и самые высоко-прецизионные ЦАП, в современном мире.

Лекция №3

«Аналого-цифровое и цифро-аналоговое преобразование».

В микропроцессорных системах роль импульсного элемента выполняет аналого-цифровой преобразователь (АЦП), а роль экстраполятора – цифро-аналоговый преобразователь (ЦАП).

Аналого-цифровое преобразование заключается в преобразовании информации, содержащейся в аналоговом сигнале, в цифровой код. Цифро-аналоговое преобразование призвано выполнять обратную задачу, т.е. преобразовывать число, представленное в виде цифрового кода, в эквивалентный аналоговый сигнал.

АЦП, как правило, устанавливаются в цепях обратных связей цифровых систем управления для преобразования аналоговых сигналов обратных связей в коды, воспринимаемые цифровой частью системы. Т.о. АЦП выполняют несколько функций, таких как: временная дискретизация, квантование по уровню, кодирование. Обобщенная структурная схема АЦП представлена на рис.3.1.


На вход АЦП подается сигнал в виде тока или напряжения, который в процессе преобразования квантуется по уровню. Идеальная статическая характеристика 3-разрядного АЦП приведена на рис.3.2.


Входные сигналы могут принимать любые значения в диапазоне от – U max до U max , а выходные соответствуют восьми (2 3) дискретным уровням. Величина входного напряжения, при которой происходит переход от одного зачения выходного кода АЦП к другому соседнему значению, называется напряжением межкодового перехода . Разность между двумя смежными значениями межкодовых переходов называется шагом квантования или единицей младшего значащего разряда (МЗР) .Начальной точкой характеристики преобразования называется точка, определяемая значением входного сигнала, определяемого как

(3.1),

где U 0,1 – напряжение первого межкодового перехода, U LSB – шаг квантования ( LSB – Least Significant Bit ). преобразования соответствует входному напряжению, определяемому соотношением

(3.2).

Область значений входного напряжения АЦП, ограниченная значениями U 0,1 и U N-1,N называется диапазоном входного напряжения .

(3.3).

Диапазон входного напряжения и величину младшего разряда N -разрядного АЦП и ЦАП связывает соотношение

(3.4).

Напряжение

(3.5)

называется напряжением полной шкалы ( FSR – Full Scale Range ). Как правило, этот параметропределяется уровнем выходного сигнала источника опорного напряжения, подключенного к АЦП. Величина шага квантования или единицы младшего разряда т.о. равна

(3.6),

а величина единицы старшего значащего разряда

(3.7).

Как видно из рис.3.2, в процессе преобразования возникает ошибка, не превышающая по величине половины величины младшего разряда U LSB /2.

Существуют различные методы аналого-цифрового преобразования, различающиеся между собой по точности и быстродействию. В большинстве случаев эти характеристики антогонистичны друг другу. В настоящее время большое распространение получили такие типы преобразователей как АЦП последовательных приближений (поразрядного уравновешивания), интегрирующие АЦП, параллельные ( Flash ) АЦП, «сигма-дельта» АЦП и др.

Структурная схема АЦП последовательных приближений представлена на рис.3.3.



Основными элементами устройства являются компаратор (К), цифро-аналоговый преобразователь (ЦАП) и схема логического управления. Принцип преобразования основан на последовательном сравнении уровня входного сигнала с уровнями сигналов соответствующих различным комбинациям выходного кода и формировании результирующего кода по результатам сравнений. Очередность сравниваемых кодов удовлетворяет правилу половинного деления. В начале преобразования входной код ЦАП устанавливается в состояние, в котором все разряды кроме старшего равны 0, а старший равен 1. При этой комбинации на выходе ЦАП формируется напряжение, равное половине диапазона входного напряжения. Это напряжение сравнивается со входным напряжением на компараторе. Если входной сигнал больше сигнала, поступающего с ЦАП, то старший разряд выходного кода устанавливается в 1, в противном случае он сбрасывается в 0. На следующем такте частично сформированный таким образом код снова поступает на вход ЦАП, в нем устанавливается в единицу следующий разряд и сравнение повторяется. Процесс продолжается до сравнения младшего бита. Т.о. для формирования N -разрядного выходного кода необходимо N одинаковых элементарных тактов сравнения. Это означает, что при прочих равных условиях быстродействие такого АЦП уменьшается с ростом его разрядности. Внутренние элементы АЦП последовательных приближений (ЦАП и компаратор) должны обладать точностными показателями лучше величины половины младшего разряда АЦП.

Структурная схема параллельного ( Flash ) АЦП представлена на рис.3.4.



В этом случае входное напряжение подается для сравнения на одноименные входы сразу N -1 компараторов. На противоположные входы компараторов подаются сигналы с высокоточного делителя напряжения, который подключен к источнику опорного напряжения. При этом напряжения с выходов делителя равномерно распределены вдоль всего диапазона изменения входного сигнала. Шифратор с приоритетом формирует цифровой выходной сигнал, соответствующий самому старшему компаратору с активизированным выходным сигналом. Т.о. для обеспечения N -разрядного преобразования необходимо 2 N резисторов делителя и 2 N -1 компаратор. Это один из самых быстрых способов преобразования. Однако, при большой разрядности он требует больших аппаратных затрат. Точность всех резисторов делителя и компараторов снова должна быть лучше половины величины младшего разряда.

Структурная схема АЦП двойного интегрирования представлена на рис.3.5.



Основными элементами системы являются аналоговый коммутатор, состоящий из ключей SW 1, SW 2, SW 3, интегратор И, компаратор К и счетчик С. Процесс преобразования состоит из трех фаз (рис.3.6).



На первой фазе замкнут ключ SW 1, а остальные ключи разомкнуты. Через замкнутый ключ SW 1 входное напряжение подается на интегратор, который в течение фиксированного интервала времени интегрирует входной сигнал. По истечение этого интервала времени уровень выходного сигнала интегратора пропорционален значению входного сигнала. На втором этапе преобразования ключ SW 1 размыкается, а ключ SW 2 замыкается, и на вход интегратора подается сигнал с источника опорного напряжения. Конденсатор интегратора разряжается от напряжения, накопленного в первом интервале преобразования с постоянной скоростью, пропорциональной опорному напряжению. Этот этап длится до тех пор, пока выходное напряжение интегратора не упадет до нуля, о чем свидетельствует выходной сигнал компаратора, сравнивающего сигнал интегратора с нулем. Длительность второго этапа пропорциональна входному напряжению преобразователя. В течение всего второго этапа на счетчик помтупают высокочастотные импульсы с калиброванной частотой. Т.о. по истечению второго этапа цифровые показания счетчика пропорциональны входному напряжению. С помощью данного метода можно добиться очень хорошей точности не предъявляя высоких требований к точности и стабильности компонентов. В часности, стабильность емкости интегратора может быть не высокой, поскольку циклы заряда и разряда происходят со скоростью, обратно пропорциональной емкости. Болле того, ошибки дрейфа и смещения компарптора компенсируются благодаря тому, что каждый этап преобразования начинается и заканчивается на одном и том же напряжении. Для повышения точности используется третий этап преобразования, когда на вход интегратора через ключ SW 3 подается нулевой сигнал. Поскольку на этом этапе используется тот же интегратор и компаратор, то вычитание выходного значения ошибки при нуле из результата последующего измерения позволяет компенсировать ошибки, связанные с измерениями вблизи нуля. Жесткие требования не предъявляются даже к частоте тактовых импульсов, поступающих на счетчик, т.к. фиксированный интервал времени на первом этапе преобразования формируется из тех же самых импульсов. Жесткие требования предъявляются только к току разряда, т.е. к источнику опорного напряжения. Недостатком такого способа преобразования является невысокое быстродействие.

АЦП характеризуютя рядом параметров, позволяющих реализовать выбор конкретного устройства исходя из требований, предъявляемых к системе. Все параметры АЦП можно разделить на две группы: статические и динамические. Первые определяют точностные характеристики устройства при работе с неизменяющимся либо медленно изменяющимся входным сигналом, а вторые характеризуют быстродействие устройства как сохранение точности при увеличении частоты входного сигнала.

Уровню квантования, лежащему в окрестностях нуля входного сигнала соответствуют напряжения межкодовых переходов –0.5 U LSB и 0.5 U LSB (первый имеет место только в случае биполярного входного сигнала). Однако, в реальных устройствах, напряжения данных межкодовых переходов могут отличаться от этих идеальных значений. Отклонение реальных уровней этих напряжениймежкодовых переходов от их идеальных значений называется ошибкой биполярного смещения нуля ( Bipolar Zero Error ) и ошибкой униполярного смещения нуля ( Zero Offset Error ) соответственно. При биполярных диапазонах преобразования обычно используют ошибку смещения нуля, а при униполярных – ошибку униполярного смещения. Эта ошибка приводит к параллельному смещению реальной характеристики преобразования относительно идеальной характеристики вдорль оси абсцисс (рис.3.7).


Отклонение уровня входного сигнала соответствующего последнему межкодовому переходу от своего идеального значения U FSR -1.5 U LSB , называется ошибкой полной шкалы ( Full Scale Error ).

Коэффициентом преобразования АЦП называется тангенс угла наклона прямой, проведенной через начальную и конечную точки реальной характеристики преобразования. Разность между действительным и идеальным значением коэффициента преобразования называется ошибкой коэффициента преобразования ( Gain Error ) (рис.3.7).Она включает ошибки на концах шкалы, но не включает ошибки нуля шкалы. Для униполярного диапазона она определяется как разность между ошибкой полной шкалы и ошибкой униполярного смещения нуля, а для биполярного диапазона – как разность между ошибкой полной шкалы и ошибкой биполярного смещения нуля. По сути дела в любом случае это отклонение идеального расстояния между последним и первым межкодовыми переходами (равного U FSR -2 U LSB ) от его реального значения.

Ошибки смещения нуля и коэффициента преобразования можно скомпенсировать подстройкой предварительного усилителя АЦП. Для этого необходимо иметь вольтметр с точностью не хуже 0.1 U LSB . Для независимости этих двух ошибок сначала корректируют ошибку смещения нуля, а затем, ошибку коэффициента преобразования. Для коррекции ошибки смещения нуля АЦП необходимо:

1. Установить входное напряжение точно на уровне 0.5 U LSB ;

2. Подстраивать смещение предварительного усилителя АЦП до тех пор, пока АЦП не переключится в состояние 00…01.

Для коррекции ошибки коэффициента преобразования необходимо:

1. Установить входное напряжение точно на уровне U FSR -1.5 U LSB ;

2. Подстраивать коэффициент усиления предварительного усилителя АЦП до тех пор, пока АЦП не переключится в состояние 11…1.

Из-за не идеальности элементов схемы АЦП ступеньки в различных точках характеристики АЦП отличаются друг от друга по величине и не равны U LSB (рис.3.8).


Отклонение расстояния между серединами двух соседних реальных шагов квантования от идеального значения шага квантования U LSB называется дифференциальной нелинейностью (DNL – Differential Nonlinearity). Если DNL больше или равна U LSB , то у АЦП могут появиться так называемые “пропущенные коды” (рис.3.3). Это влечет локальное резкое изменение коэффициента передачи АЦП, что в замкнутых системах управления может привести к потере устойчивости.

Для тех приложений, где важно поддерживать выходной сигнал с заданной точностью, важно на солько точно выходные коды АЦП соответствуют напряжениям межкодовых переходов. Максимальное отклонение центра шага квантования на реальной характеристике АЦП от линеаризованной характеристики называется интегральной нелинейностью (INL – Integral Nonlinearity) или относительной точностью (Relative Accuracy) АЦП (рис.3.9).


Линеаризованная характеристика проводится через крайние точки реальной характеристики преобразования, после того, как они были откалиброваны, т.е. устранены ошибки смещения нуля и коэффициента преобразования.

Ошибки дифференциальной и интегральной нелинейности скомпенсировать простыми средствами практически невозможно.

Разрешающей способностью АЦП ( Resolution ) называется величина, обратная максимальному числу кодовых комбинаций на выходе АЦП

(3.8).

Этот параметр определяет какой минимальный уровень входного сигнала (относительно сигнала полной амплитуды) способен воспринимать АЦП.

Точность и разрешающая способность – две независимые характеристики. Разрешающая способность играет определяющую роль тогда, когда важно обеспечить заданный динамический диапазон входного сигнала. Точность является определяющей, когда требуется поддерживать регулируемую величину на заданном уровне с фиксированной точностью.

Динамическим диапазоном АЦП (DR - Dinamic Range ) называется отношение максимального воспринимаемого уровня входного напряжения к минимальному, выраженное в дБ

(3.9).

Этот параметр определяет максимальное количество информации, которое способен передавать АЦП. Так, для 12-разрядного АЦП DR =72 дБ.

Характеристики реальных АЦП отличаются от характеристик идеальных устройств из-за неидеальности элементов реального устройства. Рассмотрим некоторые параметры, характеризующие реальные АЦП.

Отношением сигнал-шум (SNR – Signal to Noise Ratio ) называется отношение среднеквадратического значения входного синусоидального сигнала к среднеквадратическому значению шума, который определяется как сумма всех остальных спектральных компонент вплоть до половины частоты дискретизации, без учета постоянной составляющей. Для идеального N -разрядного АЦП, который генерирует лишь шум квантования SNR , выражаемый в децибелах, можно определить как


(3.10),

где N – разрядность АЦП. Так, для 12-разрядного идеального АЦП SNR =74 дБ. Это значение больше значения динамического диапазона такого же АЦП т.к. минимальный уровень воспринимаемого сигнала должен быть больше уровня шума. В данной формуле учитывается только шум квантования и не учитываются другие источники шума, существующие в реальных АЦП. Поэтому, значения SNR для реальных АЦП как правило ниже идеального. Типичным значением SNR для реального 12-разрядного АЦП является 68-70 дБ.

Если входной сигнал имеет размах меньше U FSR , то в последнюю формулу нужно внести корректировку

(3.11),

где К ОС – ослабление входного сигнала, выраженное в дБ. Так, если входной сигнал 12-разрядного АЦП имеет амплитуду в 10 раз меньше половины напряжения полной шкалы, то К ОС =-20 дБ и SNR =74 дБ – 20 дБ=54 дБ.

Значение реального SNR может быть использовано для определения эффективного количества разрядов АЦП ( ENOB – Effective Number of Bits ). Оно определяется по формуле

(3.12).

Этот показатель может характеризовать действительную решающую способность реального АЦП, Так, 12-разрядный АЦП, у которого SNR =68 дБ для сигнала с К ОС =-20 дБ является на самом деле 7-разрядным ( ENOB =7.68). Значение ENOB сильно зависит от частоты входного сигнала, т.е. эффективная разрядность АЦП падает с увеличением частоты.

Суммарный коэффициент гармоник ( THD – Total Harmonic Distortion ) – это отношение суммы среднеквадратических значений всех высших гармоник к среднеквадратическому значению основной гармоники

(3.13),

где n обычно ограничивают на уровне 6 или 9. Этот параметр характеризует уровень гармонических искажений выходного сигнала АЦП по сравнения с входным. THD возрастает с частотой входного сигнала.

Полоса частот полной мощности ( FPBW – Full Power Bandwidth ) – это максимальная частота входного сигнала с размахом, равным полной шкале, при которой амплитуда восстановленной основной составляющей уменьшается не более чем на 3 дБ. С ростом частоты входного сигнала аналоговые цепи АЦП перестают успевать отрабатывать его изменения с заданной точностью, что приводит к уменьшению коэффициента преобразования АЦП на высоких частотах.

Время установления (Settling Time ) – это время, необходимое АЦП для достижения номинальной точности после того, как на ее вход был подан ступенчатый сигнал с амплитудой, равной полному диапазонувходного сигнала. Этот параметр ограничен из-за конечного быстродействия различных узлов АЦП.

Вследствие различного рода погрешностей характеристика реального АЦП является нелинейной. Если на вход устройства с нелинейностями подать сигнал, спектр которого состоит из двух гармоник f a и f b , то в спектре выходного сигнала такого устройства кроме основных гармоник будут присутствовать интермодуляционные субгармоники с частотами , где m , n =1,2,3,… Субгармоники второго порядка – это f a + f b , f a - f b , субгармоники третьего порядка – это 2 f a + f b , 2 f a - f b , f a +2 f b , f a -2 f b . Если входные синусоиды имеют близкие частоты, расположенные вблизи верхнего края полосы пропускания, то субгармоники второго порядка далеко отстоят от входных синусоид и располагаются в области нижних частот, тогда как субгармоники третьего порядка имеют частоты, близкие к входным частотам.

Коэффициент интермодуляционных искажений ( Intermodulatin Distortion ) – это отношение суммы среднеквадратических значений интермодуляционных субгармоник определенного порядка к сумме среднеквадратических значений основных гармоник, выраженное в дБ

(3.14).

Любой способ аналого-цифрового преобразования требует некоторого конечного времени для его выполнения. Под временем преобразования АЦП ( Conversion Time ) понимается интервал времени от момента поступления аналогового сигнала на вход АЦП до момента появления соответствующего выходного кода. Если входной сигнал АЦП изменяется во времени, то конечное время преобразования АЦП приводит к появлению т.н. аппертурной погрешности (рис.3.10).



Сигнал начала преобразования поступает в момент t 0 , а выходной код появляется в момент t 1 . За это время входной сигнал успел измениться на величину D U . Возникает неопределенность: какому уровню значения входного сигнала в диапазоне U 0 – U 0 + D U соответствует данный выходной код. Для сохранения точности преобразования на уровне единицы младшего разряда необходимо чтобы за время преобразования изменение значения сигнала на входе АЦП составило бы не более величины единицы младшего разряда

(3.15).

Изменение уровня сигнала за время преобразования можно приблизительно вычислить как

(3.16),

где U in – входное напряжение АЦП, T c – время преобразования. Подставляя (3.16) в (3.15) получим

(3.17).

Если на входе действует синусоидальный сигнал с частотой f

(3.18),

то его производная будет равна

(3.19).

Она принимает максимальное значение когда косинус равен 1. Подставляя с учетом этого (3.9) в (3.7) получим

, или

(3.20)

Конечное время преобразования АЦП приводит к требованию ограничения скорости изменения входного сигнала. Для того, чтобы уменьшить апертурную погрешность и т.о. ослабить ограничение на скорость изменения входного сигнала АЦП на входе преобразователя устанавливается т.н. «устройство выборки-хранения» (УВХ) ( Track / Hold Unit ). Упрощенная схема УВХ представлена на рис.3.11.



Это устройство имеет два режима работы: режим выборки и режим фиксации. Режим выборки соответствует замкнутому состоянию ключа SW . В этом режиме выходное напряжение УВХ повторяет его входное напряжение. Режим фиксации включается по команде размыкающей ключ SW . При этом связь между входом и выходом УВХ прерывается, а выходной сигнал поддерживается на постоянном уровне, соответствующем уровню входного сигнала на момент поступления команды фиксации за счет заряда, накопленного на конденсаторе. Т.о., если подать команду фиксации непосредственно перед началом преобразования АЦП, то выходной сигнал УВХ будет поддерживаться на неизменном уровне в течение всего времени преобразования. После окончания преобразования УВХ снова переводится в режим выборки. Работа реального УВХ несколько отличается от идеального случая, который был описан (рис.3.12).



(3.21),

где f – частота входного сигнала, t A – величина апертурной неопределенности.

В реальных УВХ выходной сигнал не может оставаться абсолютно неизменным в течение конечного времени преобразования. Конденсатор будет постепенно разряжаться маленьким входным током выходного буфера. Для сохранения требуемой точности необходимо чтобы за время преобразования заряд конденсатора не изменился больше чем на 0.5 U LSB .

Цифро-аналоговые преобразователи устанавливаются обычно на выходе микропроцессорной системы для преобразования ее выходных кодов в аналоговый сигнал, подаваемый на непрерывный объект регулирования. Идеальная статическая характеристика 3-разрядного ЦАП представлена на рис.3.13.


Начальная точка характеристики определяетсякак точка, соответствующая первому (нулевому) входному коду U 00…0 . Конечная точка характеристики определяетсякак точка, соответствующая последнему входному коду U 11…1 . Определения диапазона выходного напряжения, единицы младшего разряда квантования, ошибки смещения нуля, ошибки коэффициента преобразования аналогичны соответствующим характеристикам АЦП.

С точки зрения структурной организации у ЦАП наблюдается гораздо меньшее разнообразие вариантов построения преобразователя. Основной структурой ЦАП является т.н. “цепная R -2 R схема” (рис.3.14).



Легко показать, что входной ток схемы равен I in = U REF / R , а токи последовательных звеньев цепи соответственно I in /2, I in /4, I in /8 и т.д. Для преобразования входного цифрового кода в выходной ток достаточно собрать все токи плечей, соответствующих единицам во входном коде, в выходной точке преобразователя (рис.3.15).



Если к выходной точке преобразователя подключить операционный усилитель, то выходное напряжение можно определить как

(3.22),

где K – входной цифровой код, N – разрядность ЦАП.

Все существующие ЦАП делятся на две больших группы: ЦАП с выходом по току и ЦАП с выходом по напряжению. Различие между ними заключается в отсутствии или наличии у микросхемы ЦАП оконечного каскада на операционном усилителе. ЦАП с выходом по напряжению являются более завершенными устройствами и требуют меньше дополнительных элементов для своей работы. Однако, оконечный каскад наряду с параметрами лесничной схемы определяет динамические и точностные параметры ЦАП. Выполнить точный быстродействующий операционный усилитель на одном кристалле с ЦАП часто бывает затруднительно. Поэтому большинство быстродействующих ЦАП имеют выход по току.

Дифференциальная нелинейность для ЦАП определяется как отклонение расстояния между двумя соседними уровнями выходного аналогового сигнала от идеального значения U LSB . Большое значение дифференциальной нелинейности может привести к тому, что ЦАП станет немонотонным. Это означает, что увеличение цифрового кода будет приводить к уменьшению выходного сигнала на каком нибудь участке характеристики (рис.3.16). Это может приводить к нежелательной генерации в системе.


Интегральная нелинейность для ЦАП определяется как наибольшее отклонение уровня аналогового выходного сигнала от прямой линии, проведенной через точки, соответствующие первому и последнему коду, после того, как они отрегулированы.

Время установления ЦАП определяется как время, за которое выходной сигал ЦАП установится на заданном уровне с погрешностью не более 0.5 U LSB после того, как входной код изменился со значения 00…0 до значения 11…1. Если ЦАП имеет входные регистры, то определенная часть времени установления обусловлена фиксированной задержкой прохождения цифровых сигналов, и лишь оставшаяся часть – инерционностью самой схемы ЦАП. Поэтому время установления измеряют обычно не от момента поступления нового кода на вход ЦАП, а от момента начала изменения выходного сигнала, соответствующего новому коду, до момента установления выходного сигнала с точностью 0.5U LSB (рис.3.17) .



В этом случае время установления определяет максимальную частоту стробирования ЦАП

(3.23),

где t S – время установления.

Входные цифровые цепи ЦАП имеют конечное быстродействие. В добавок, скорость распространения сигналов, соответствующих различным разрядом входного кода, неодинакова вследствие разброса параметров элементов и схемных особенностей. В результате этого плечи лестничной схемы ЦАП при поступлении нового кода переключаются не синхронно, а с некоторой задержкой один относительно другого. Это приводит к тому, что в диаграмме выходного напряжения ЦАП, при переходе от одного установившегося значения к другому наблюдаются выбросы различной амплитуды и направленности (рис.3.18).




Согласно алгоритму работы, ЦАП представляет из себя экстраполятор нулевого порядка, частотная характеристика которого может быть представлена выражением

(3.24),

где w s – частота дискретизации. Амплитудно-частотная характеристика ЦАП представлена на рис.3.20.



Как видно, на частоте 0.5 w s восстанавливаемый сигнал ослабляется на 3.92 дБ по сравнению с низкочастотными составляющими сигнала. Таким образом, имеет место небольшое искажение спектра восстанавливаемого сигнала. В большинстве случаев это небольшое искажение не сказывается значительно на параметрах системы. Однако, в тех случаях, когда необходима повышенная линейность спектральных характеристик системы (например в системах обработки звука), для выравнивания результирующего спектра на выходе ЦАП необходимо ставить специальный восстанавливающий фильтр с частотной характеристикой типа x / sin (x ).

Похожие публикации