Разложение в ряд фурье последовательности треугольных импульсов. Ряд Фурье в комплексной форме. Последовательность прямоугольных импульсов

Общие описания

Французский математик Фурье (Ж. Б. Ж. Фурье 1768-1830) провоз гласил достаточно смелую для своего времени гипотезу. Согласно этой гипотезе не существует функции, которую нельзя было бы разложить в тригонометрический ряд. Однако, к сожалению, в то время такая идея не была воспринята всерьез. И это естественно. Сам Фурье не смог привести убедительных доказательств, а интуитивно поверить в гипотезу Фурье очень трудно. Особенно нелегко представить тот факт, что при сложении простых функций, подобных тригонометрическим, воспроизводятся функции, совершенно на них не похожие. Но если предположить, что гипотеза Фурье верна, то периодический сигнал любой формы можно разложить на синусоиды различных частот, или наоборот, посредством соответствующего сложения синусоид с разными частотами возможно синтезировать сигнал какой угодно формы. Следовательно, если эта теория верна, то ее роль в обработке сигналов может быть очень велика. В этой главе первым делом попы­таемся проиллюстрировать правильность гипотезы Фурье.

Рассмотрим функцию

f(t)= 2sin t – sin 2t

Простой тригонометрический ряд

Функция является суммой тригонометрических функций, иными словами, представлена в виде тригонометрического ряда из двух членов. Добавим одно слагаемое и создадим новый ряд из трех членов

Снова добавив несколько слагаемых, получим новый тригонометрический ряд из десяти членов:

Коэффициенты этого тригонометрического ряда обозначим как b k , где k - целые числа. Если внимательно посмотреть на последнее соотношение, то видно, что коэффициенты можно описать следующим выражением:

Тогда функцию f(t) можно представить следующим образом:

Коэффициенты b k - это амплитуды синусоид с угловой частотой к. Иначе говоря, они задают величину частотных составляющих.

Рассмотрев случай, когда верхний индекс к равен 10, т.е. М= 10. Увеличив значение М до 100, получим функцию f(t).

Эта функция, будучи тригонометрическим рядом, по форме приближается к пилообразному сигналу. И, похоже, гипотеза Фурье совершенно верна по отноше­нию к физическим сигналам, с которыми мы имеем дело. К тому же в этом примере форма сигнала не гладкая, а включает точки разрыва. И то, что функция воспроизводится даже в точках разрыва, выглядит многообещающим.

В физическом мире действительно много явлений, которые можно представить как суммы колебаний различных частот. Типичным примером этих явлений является свет. Он представляет собой сумму электромагнитных волн с длиной волны от 8000 до 4000 ангстрем (от красного цвета свечения до фиолетового). Вы, конечно, знаете, что если белый свет пропустить через призму, то появится спектр из семи чистых цветов. Это происходит потому, что коэффициент преломления стекла, из которого сделана призма, изменяется в зависимости от длины электромагнитной волны. Это как раз и является доказательством того, что белый свет - это сумма световых волн различной дли­ны. Итак, пропустив свет через призму и получив его спектр, мы можем проанализировать свойства света, исследуя цветовые комбинации. Подобно этому, посредством разложения принятого сигнала на различные частотные составляющие, мы можем узнать, как возник первоначальный сигнал, по какому пути он следовал или, наконец, какому внешнему влиянию он подвергался. Одним словом, мы можем получить информацию для выяснения происхождения сигнала.

Подобный метод анализа называется спектральным анализом или анализом Фурье.

Рассмотрим следующую систему ортонормированных функций:

Функцию f(t) можно разложить по этой системе функций на отрезке [-π, π] следующим образом:

Коэффициенты α k , β k , как было показано ранее, можно выразить через скалярные произведения:

В общем виде функцию f(t) можно представить следующим образом:

Коэффициенты α 0 , α k , β k называют коэффициентами Фурье, а подобное представление функции называется разложением в ряд Фурье. Иногда такое представление называют действительным разложением в ряд Фурье, а коэффициенты - действительными коэффициентами Фурье. Термин «действительный» вводится для того, чтобы отличить представленное разложение от разложения в ряд Фурье в комплексной форме.

Как уже было сказано ранее, произвольную функцию можно разложить по системе ортогональных функций, даже если функции из этой системы не представляются в виде тригонометрического ряда. Обычно под разложением в ряд Фурье подразумевается разложение в тригонометрический ряд. Если коэффициенты Фурье выразить через α 0 , α k , β k получим:

Поскольку при k = 0 coskt = 1, то константа а 0 /2 выражает общий вид коэффициента а k при k = 0.

В соотношении (5.1) колебание самого большого периода, представленное суммой cos t и sin t, называют колебанием основной частоты или первой гармоникой. Колебание с периодом, равным половине основного периода, называют второй гармоникой. Колебание с периодом, равным 1/3 основного периода, называют третьей гармоникой и т.д. Как видно из соотношения (5.1) a 0 является постоянной величиной, выражающей среднее значение функции f{t) . Если функция f(t) представляет собой электрический сигнал, то а 0 представляет его постоянную составляющую. Следовательно, все остальные коэффициенты Фурье выражают его переменные составляющие.

На Рис. 5.2 представлен сигнал и его разложение в ряд Фурье: на постоянную составляющую и гармоники различных частот. Во временной области, где переменной величиной является время, сигнал выражается функцией f(t), а в частотной области, где переменной величиной является частота, сигнал представляется коэффициен­тами Фурье (a k , b к).

Первая гармоника является периодической функцией с периодом 2 π.Прочие гармоники также имеют период, кратный 2 π. Исходя из этого, при формировании сигнала из составляющих ряда Фу­рье мы, естественно, получим периодическую функцию с периодом 2 π. А если это так, то разложение в ряд Фурье - это, собственно говоря, способ представления периодических функций.

Разложим в ряд Фурье сигнал часто встречающегося вида. Например, рассмотрим упомянутую ранее пилообразную кривую (Рис. 5.3). Сигнал такой формы на отрезке - π < t < π я выражается функцией f(t) = t , поэтому коэффициенты Фурье могут быть выражены следующим образом:

Пример 1.

Разложение в ряд Фурье сигнала пилообразной формы

f(t) = t,

1.3 Сделать общие выводы.

Часть 2

Цель работы: углубление теоретических знаний, полученных в ходе изучения преобразования Фурье (Fourier Transform)

Необходимые теоретические сведения.

Изменяя период Т и длительность импульса как показано на рис. 7, можно изменять спектр сигнала. С увеличением периода гармоники сближаются, не изменяя форму огибающей.


Рис.7 – Изменение спектра

Смоделируем одиночный прямоугольный импульс, периодическую последовательность импульсов с периодом Т и 10Т .

t = 0:.0314:25;

y= square(2*pi*t/10, pi*pi);

z = rectpuls(2*pi*t1/10);

subplot(4,2,1); plot(t,x)

subplot(4,2,2); plot(t,y)

subplot(4,2,3); plot(t1,z)

Проведем спектральный анализ полученных сигналов. Непериодические процессы - таковыми являются информационные сигналы , одиночные импульсы , хаотические колебания (шумы ) - обладают сплошным или непрерывным спектром. Интуитивно к такому выводу можно прийти, представляя одиночный импульс частью периодической последовательности, период которой неограниченно увеличивается. Действительно, при увеличении интервала между импульсами гармоники на спектральных диаграммах периодических последовательностей импульсов сближаются: чем реже следуют импульсы, тем меньше расстояние между соседними гармониками (оно равно 1/T ). Спектр одиночного импульса (предельный случай увеличения периода) становится непрерывным, и вводится он не рядами, а интегралами Фурье .

Преобразование Фурье (Fourier transform) является инструментом спектрально­го анализа непериодических сигналов.

В описанных ниже функциях реализован особый метод быстрого преобразования Фурье (БПФ) - Fast Fourier Transform (FFT ), позволяющий резко уменьшить число арифметических операций в ходе приведенных выше преобразований. Метод особенно эффективен, если число обрабатываемых элементов (отсчетов) составляет 2 n , где n - целое положительное число. В MatLab используются следующие функции:

fft(X ) - возвращает для вектора X дискретное преобразование Фурье, по возможности используя алгоритм быстрого преобразования Фурье. Если X - матрица, функция fft возвращает преобразование Фурье для каждого столбца матрицы;

fft(X.n) - возвращает n-точечное преобразование Фурье. Если длина вектора X меньше n, то недостающие элементы заполняются нулями. Если длина X больше п, то лишние элементы удаляются. Когда X - матрица, длина столбцов корректируется аналогично;

ft(X,[ Ldirn) и fft(X,n,dim) - применяют преобразование Фурье к одной из размерностей массива в зависимости от значения параметра dim .

Возможно одномерное обратное преобразование Фурье, реализуемое следующими функциями:

ifft(F) - возвращает результат дискретного обратного преобразования Фурье вектора F . Если F - матрица, то ifft возвращает обратное преобразование Фурье для каждого столбца этой матрицы;

ifft(F.n) - возвращает результат n-точечного дискретного обратного преобразования Фурье вектора F ;

ifft(F.,dim) иу = ifft(X,n,dim) - возвращают результат обратного дискретного преобразования Фурье массива F по строкам или по столбцам в зависимости от значения скаляра dim .

Для любого X результат последовательного выполнения прямого и обратного преобразований Фурье ifft(fft(x)) равен X с точностью до погрешности округления. Если X - массив действительных чисел, ifft(fft(x)) может иметь малые мнимые части.

Получим спектры смоделированных сигналов.

Вызовем программу SPTool (Signal Processing Tool) . Импортируем смоделированные сигналы и рассчитаем спектр сигнала. С этой целью выделяем сигнал в списке сигналов и нажмите кнопку Create , расположенную под списком спектров. В окне Spectrum Viewer в поле Parameters нужно указать метод спектрального анализа. Указываем метод ДПФ (используется быстрое преобразование Фурье БПФ (FFT)). Указав метод, следует щёлкнуть мышью по кнопке Apply . Будет выведен график спектральной плотности мощности. Имеется возможность выводить спектры в линейном или в логарифмическом масштабе (меню Options ).

Непрерывным (сплошным) является спектр хаотических (шумовых ) колебаний . В этом случае спектральная характеристика, как функция частоты, также представляет собой хаотический (случайный ) процесс , статистические параметры которого определяются спецификой конкретного случайного временного процесса. Сформируем сигнал, содержащий регулярные составляющие с частотами 50 Гц и 120 Гц и случайную аддитивную компоненту с нулевым средним.

ЗАДАНИЕ 2

Разложению в ряды Фурье подвергаются периодические сигналы. Как уже было сказано выше, периодическую функцию любой формы, заданную на интервале одного периода Т = b-a и удовлетворяющую на этом интервале условиям Дирихле (ограниченная, кусочно-непрерывная, с конечным числом разрывов 1-го рода), можно представить в виде ряда Фурье:

s(t) = S n exp(jnDwt), S n = S(nDw), Dw = 2p/T, (1)

где весовые коэффициенты S n ряда определяются по формуле:

S n = (1/T) s(t) exp(-jnDwt) dt. (2)

Ряд Фурье представляет собой ансамбль комплексных экспонент exp(jnDwt) с частотами, образующими арифметическую прогрессию. Функцию весовых коэффициентов S(nDw ) принято называть комплексным спектром периодического сигнала или фурье-образом функции s(t). Спектр периодического сигнала является дискретной функцией, т.к. он определен только для целых значений n с шагом по частоте, обратным периоду: Dw = 2p/Т (или Df = 1/T ). Первую частотную составляющую спектра при n = 1, равную w 1 = 1×Dw = 2p/T (или f 1 = 1/T ), называют основной частотой сигнала (первой гармоникой), остальные частоты дискретного спектра nw 1 при n>1 называют гармониками сигнала. Значения S(nDw) по положительным и отрицательным значениям n являются комплексно сопряженными.

С чисто математических позиций множество функций exp(jnDwt) , -¥ < n < ¥ образует бесконечномерный базис линейного пространства L 2 ортогональных синус-косинусных функций, а коэффициенты S n по (2) представляют собой проекции сигнала s(t) на эти базисные функции. Соответственно, сигнал s(t) в форме ряда Фурье (1) – это бесконечномерный вектор в пространстве L 2 , точка с координатами S n по базисным осям пространства exp(jnDwt). Подынтегральную функцию экспоненты в выражении (2) с использованием тождества Эйлера

exp(±jwt) = cos(wt) ± j×sin(wt)

можно разложить на косинусную и синусную составляющие и выразить комплексный спектр в виде действительной и мнимой части:

S n = (1/T) s(t) dt = А n - jB n . (3)

A n ≡ A(nDw) = (1/T) s(t) cos(nDwt) dt, (4)

B n ≡ B(nDw) = (1/T) s(t) sin(nDwt) dt. (5)

На рис. 4 приведен пример периодического сигнала (прямоугольный импульс на интервале (1-3.3), повторяющийся с периодом Т=40) и форма действительной и мнимой части его спектра. Обратим внимание, что действительная часть спектра является четной относительно нуля функцией A(nDw) = A(-nDw), так как при вычислении значений A(nDw) по формуле (4) используется четная косинусная функция cos(nDwt) = cos(-nDwt). Мнимая часть спектра является нечетной функцией B(nDw) = -B(-nDw), так как для ее вычисления по (5) используется нечетная синусная функция sin(nDwt) = - sin(-nDwt).

Рис. 4. Сигнал и его комплексный спектр.

Комплексные числа дискретной функции (3) могут быть представлены в виде модулей и аргументов комплекс. экспоненты, что дает следующую форму записи комплексного спектра:

S n = R n exp(jj n), (3")

R n 2 ≡ R 2 (nDw) = A 2 (nDw)+B 2 (nDw),j n ≡ j(nDw) = arctg(-B(nDw)/A(nDw)).

Рис. 5. Модуль и аргумент спектра.

Модуль спектра R(nDw) называют двусторонним спектром амплитуд или АЧХ - сигнала, а аргумент спектра (последовательность фазовых углов j(nDw)) - двусторонним спектром фаз или ФЧХ. Спектр амплитуд всегда представляет собой четную функцию: R(nDw) = R(-nDw), а спектр фаз нечетную: j(nDw) = -j(-nDw). Пример спектра в амплитудном и фазовом представлении для сигнала, показанного на рис. 4, приведен на рис. 5. При рассмотрении спектра фаз следует учитывать периодичность 2p угловой частоты (при уменьшении фазового значения до величины менее -p происходит сброс значения -2p).

Если функция s(t) является четной, то все значения B(nDw) по (5) равны нулю, т.к. четные функции ортогональны синусным гармоникам и подынтегральное произведение s(t)·sin(nDwt) дает нулевой интеграл. Следовательно, спектр функции будет представлен только вещественными коэффициентами. Напротив, при нечетности функции s(t) обнуляются все значения коэффициентов А(nDw) (нечетные функции ортогональным косинусным гармоникам) и спектр является чисто мнимым. Этот фактор не зависит от выбора границ задания периода функции на числовой оси. На рис. 6(А) можно наглядно видеть ортогональность первой гармоники синуса и четной функции, а на рис. 6(В) соответственно косинуса и нечетной функции в пределах одного периода. Учитывая кратность частот последующих гармоник первой гармонике спектра, ортогональность сохраняется для всех гармоник ряда Фурье.

Рис. 6. Ортогональность функций.

При n = 0 имеем В о = 0, и получаем постоянную составляющую сигнала:

S 0 ≡ A o ≡ R o ≡ (1/T) s(t) dt.

2.5. Тригонометрическая форма рядов Фурье.

Объединяя комплексно сопряженные составляющие (члены ряда, симметричные относительно центрального члена ряда S 0), можно перейти к ряду Фурье в тригонометрической форме:

s(t) = А о +2 (A n cos(nDwt) + B n sin(nDwt)), (6)
s(t) = А о +2 R n cos(nDwt + j n). (6")

Значения A n , B n вычисляются по формулам (4-5), значения R n и j n - по формулам (3").

Ряд (6) представляют собой разложение периодического сигнала s(t) на сумму вещественных элементарных гармонических функций (косинусных и синусных) с весовыми коэффициентами, удвоенные значения которых (т.е. значения 2×A n , 2×B n) не что иное, как амплитуды соответствующих гармонических колебаний с частотами nDw. Совокупность амплитудных значений этих гармоник образует односторонний физически реальный (только для положительных частот nDw) спектр сигнала. Для сигнала на рис. 4, например, он полностью повторяет правую половину приведенных на рисунке спектров с удвоенными значениями амплитуд (за исключением значения А о на нулевой частоте, которое, как это следует из (6), не удваивается). Но такое графическое отображение спектров используется довольно редко (за исключением чисто технических приложений). Более широкое применение для отображения физически реальных спектров находит формула (6"). Спектр амплитуд косинусных гармоник при таком отображении называется амплитудно-частотным составом сигнала, а спектр фазовых углов гармоник – фазовой характеристикой сигнала. Форма спектров повторяет правую половину соответствующих двусторонних спектров (см. рис. 5) также с удвоенными значениями амплитуд. Для четных сигналов отсчеты фазового спектра могут принимать только значения 0 или p, для нечетных соответственно ±p/2.

Ряды Фурье произвольных аналоговых периодических сигналов могут содержать бесконечно большое количество членов. Однако одним из важных достоинств преобразования Фурье является то, что при ограничении (усечении) ряда Фурье до любого конечного числа его членов обеспечивается наилучшее по средней квадратической погрешности приближение к исходной функции (для данного количества членов).

На верхнем графике рисунка 7 приведен реконструированный сигнал при N = 8 (гармоники первого пика спектра, центр которого соответствует главной гармонике сигнала и члену ряда n = w s /Dw), N = 16 (гармоники двух первых пиков) и N=40 (пять первых пиков спектра). Естественно, что чем больше членов ряда включено в реконструкцию, тем ближе реконструированный сигнал к форме исходного сигнала. Принцип последовательного приближения к исходной форме наглядно виден на нижнем графике рисунка. На нем же можно видеть и причины появления пульсаций на реконструкции скачков функций, которые носят название эффекта Гиббса . При изменении количества суммируемых членов ряда эффект Гиббса не исчезает. Не изменяется также относительная амплитуда пульсаций (по отношению к амплитуде скачка) и относительное затухание (по коэффициенту последовательного уменьшения амплитуды пульсаций по отношению к максимальному выбросу), изменяется только частота пульсаций, которая определяется частотой последних суммируемых гармоник.

Эффект Гиббса имеет место всегда при резких нарушениях монотонности функций. На скачках эффект максимален, во всех других случаях амплитуда пульсаций зависит от характера нарушения монотонности функции.

В ряд Фурье может разлагаться и произвольная непериодическая функция, заданная (ограниченная, вырезанная из другого сигнала, и т.п.) на интервале (a,b), если нас не интересует ее поведение за пределами данного интервала. Однако следует помнить, что применение формул (1-6) автоматически означает периодическое продолжение данной функции за пределами заданного интервала (в обе стороны от него) с периодом Т = b-a. Однако при этом на краях интервала может возникнуть явление Гиббса, если уровень сигнала на краях не совпадает и образуются скачки сигнала при его периодическом повторении, как это видно на рис. 8. При разложении исходной функции в ограниченный ряд Фурье и его обработке в частотной области на самом деле при этом обрабатывается не исходная функция, а реконструированная из ограниченного ряда Фурье. При усечении рядов Фурье определенное искажение функций существует всегда. Но при малой доле энергии отсекаемой части сигнала (при быстром затухании спектров функций) этот эффект может быть и мало заметен. На скачках и разрывах функций он проявляется наиболее ярко.

Рис. 7. Реконструкция (восстановление) сигнала

Рис. 8. Проявление эффекта Гиббса


Похожая информация.


Среди разнообразных систем ортогональных функций, которые могут использоваться в качестве базисов для представления радиотехнических сигналов, исключительное место занимают гармонические (синусоидальные и косинусоидальные) функции. Значение гармонических сигналов для радиотехники обусловлено рядом причин.

В частности:

1. Гармонические сигналы инвариантны относительно преобразований, осуществляемых стационарными линейными электрическими цепями. Если такая цепь возбуждена источником гармонических колебаний, то сигнал на выходе цепи остается гармоническим с той же частотой, отличаясь от входного сигнала лишь амплитудой и начальной фазой.

2. Техника генерирования гармонических сигналов относительно проста.

Если какой-либо сигнал представлен в виде суммы гармонических колебаний с различными частотами, то говорят, - что осуществлено спектральное разложение этого сигнала. Отдельные гармонические компоненты сигнала образуют его спектр.

2.1. Периодические сигналы и ряды Фурье

Математической моделью процесса, повторяющегося во времени, является периодический сигнал со следующим свойством:

Здесь Т - период сигнала.

Ставится задача найти спектральное разложение такого сигнала.

Ряд Фурье.

Зададим на отрезке времени рассмотренный в гл. I ортонормированцый базис, образованный гармоническими функциями с кратными частотами;

Любая функция из этого базиса удовлетворяет условию периодичности (2.1). Поэтому, - выполнив ортогональное разложение сигнала в этом базисе, т. е. вычислив коэффициенты

получим спектральное разложение

справедливое на всей бесконечности оси времени.

Ряд вида (2.4) называется рядом Фурье даннрго сигнала. Введем основную частоту последовательности, образующей периодический сигнал. Вычисляя коэффициенты разложения по формуле (2.3), запишем ряд Фурье для периодического сигнала

с коэффициентами

(2.6)

Итак, в общем случае периодический сигнал содержит не зависящую от времени постоянную составляющую и бесконечный набор гармонических колебаний, так называемых гармоник с частотами кратными основной частоте последовательности.

Каждую гармонику можно описать ее амплитудой и начальной фазой Для этого коэффициенты ряда Фурье следует записать в виде

Подставив эти выражения в (2.5), получим другую, - эквивалентную форму ряда Фурье:

которая иногда оказывается удобнее.

Спектральная диаграмма периодического сигнала.

Так принято называть графическое изображение коэффициентов ряда Фурье для конкретного сигнала. Различают амплитудные и фазовые спектральные диаграммы (рис. 2.1).

Здесь по горизонтальной оси в некотором масштабе отложены частоты гармоник, а по вертикальной оси представлены их амплитуды и начальные фазы.

Рис. 2.1. Спектральные диаграммы некоторого периодического сигнала: а - амплитудная; б - фазовая

Особо интересуются амплитудной диаграммой, которая позволяет судить о процентном содержании тех или иных гармоник в спектре периодического сигнала.

Изучим несколько конкретных примеров.

Пример 2.1. Ряд Фурье периодической последовательности прямоугольных видеоимпульсов с известными параметрами , четной относительно точки t = 0.

В радиотехнике отношение называют скважностью последовательности. По формулам (2.6) находим

Окончательную формулу ряда Фурье удобно записать в виде

На рис. 2.2 представлены амплитудные диаграммы рассматриваемой последовательности в двух крайних случаях.

Важно отметить, что последовательность коротких импульсов, следующих друг за другом достаточно редко , обладает богатым спектральным составом.

Рис. 2.2. Амплитудный спектр периодической последовательности ррямоугольных видеоимпульсов: а - при большой скважности; б - при малой скважности

Пример 2.2. Ряд Фурье периодической последовательности импульсов, образованной гармоническим сигналом вида ограниченным на уровне (предполагается, что ).

Введем специальный параметр - угол отсечки , определяемый из соотношения откуда

В соотаетствии с этим величина равна длительности одного импульса, выраженной в угловой мере:

Аналитическая запись импульса, порождающего рассматриваемую последовательность, имеет вид

Постоянная составляющая последовательности

Амплитудный коэффициент первой гармоники

Аналогично вычисляют амплитуды - гармонических составляющих при

Полученные результаты обычно записывают так:

где так называемые функции Берга:

Графики некоторых функций Берга приведены на рис. 2.3.

Рис. 2.3. Графики нескольких первых функций Берга

Комплексная форма ряда Фурье.

Спектральное разложение периодического сигнала можно выполнить и несколько ионному, используя систему базисных функций, состоящую из экспонент с мнимыми показателями:

Легко видеть, что функции этой системы периодичны с периодом ортонормированы на отрезке времени так как

Ряд Фурье произвольного периодического сигнала в данном случае принимает вид

с коэффициентами

Обычно используют следующую форму записи:

Выражение (2.11) представляет собой ряд Фурье в комплексной форме.

Спектр сигнала в соответствии с формулой (2.11) содержит компоненты на отрицательной полуоси частот, причем . В ряде (2.11) слагаемые с положительными и отрицательными частотами объединяются в пары, например: и строят суммы векторов - в сторону увеличения фазового угла, в то время как векторы вращаются в противоположном направлении. Конец результирующего вектора в каждый момент времени определяет текущее значение сигнала.

Такая наглядная интерпретация спектрального разложения периодического сигнала будет использована в последующем параграфе.


ЛАБОРАТОРНАЯ РАБОТА № 1

РАЗЛОЖЕНИЯ СИГНАЛОВ В РЯД ФУРЬЕ

Цель задания

Ознакомиться с примерами разложения сигналов в ряд Фурье и практически реализовать разложение различного вида сигналов в системе MatLab.

Постановка задачи

Осуществить разложения сигналов различного вида в ряд Фурье. Разложению подлежат следующие сигналы: последовательность прямоугольных импульсов, меандр, пилообразный сигнал и последовательность треугольных импульсов.

Для каждого варианта и каждого вида сигнала заданы параметры:

для последовательности прямоугольных импульсов – амплитуда, период повторения и длительность импульсов ;

для меандра, пилообразного сигнала и последовательности треугольных импульсов – амплитуда и период повторения импульсов.

Для всех видов сигналов задано число ненулевых гармоник.

Cоставить программы в системе MatLab и построить графики.

Методические указания

Ряд Фурье

Разложению в ряд Фурье могут подвергаться периодические сигналы. При этом они представляются в виде суммы гармонических функций либо комплексных экспонент с частотами, образующими арифметическую прогрессию.

Ряд Фурье может быть применен для представления не только периодических сигналов, но и сигналов конечной длительности. При этом оговаривается временной интервал, для которого строится ряд Фурье, а в остальные моменты времени сигнал считается равным нулю. Для расчета коэффициентов ряда такой подход фактически означает периодическое продолжение сигнала за границами рассматриваемого интервала.

Синусно-косинусная форма

В этом варианте ряд Фурье имеет следующий вид:

Здесь
– круговая частота, соответствующая периоду повторения сигнала , равному . Входящие в формулу кратные ей частоты
называются гармониками, гармоники нумеруются в соответствии с индексом ; частота
называется –й гармоникой сигнала. Коэффициенты ряда и рассчитываются по формулам:

,

.

Константа рассчитывается по общей формуле для . Само же это слагаемое представляет собой среднее значение сигнала на периоде:

.
Если
является четной функцией , то все будут равны нулю и в формуле ряда Фурье будут присутствовать только косинусные слагаемые. Если является нечетной функцией , равны нулю будут, наоборот, косинусные коэффициенты и в формуле останутся лишь синусные слагаемые.

ПОСЛЕДОВАТЕЛЬНОСТЬ ПРЯМОУГОЛЬНЫХ ИМПУЛЬСОВ



Последовательность прямоугольных импульсов с амплитудой , длительностью и периодом повторения .

Рис. 1 Периодическая последовательность прямоугольных импульсов
Данный сигнал является четной функцией , поэтому для его представления удобнее использовать синусно-косинусную форму ряда Фурье – в ней будут присутствовать только косинусные слагаемые , равные

.

Отношение периода к длительности импульсов называют скважностью последовательности импульсов и обозначают буквой :
.

Представление последовательности прямоугольных импульсов в виде ряда Фурье:

.

Амплитуды гармонических слагаемых ряда зависят от номера гармоники.

МЕАНДР



Частным случаем предыдущего сигнала является меандр – последовательность прямоугольных импульсов со скважностью, равной двум, когда длительности импульсов и промежутков между ними становятся равными (рис.2).

Рис. 2 Меандр

При
, получим


Здесь m – произвольное целое число.

При разложении в ряд Фурье четные составляющие будут отсутствовать.

ПИЛООБРАЗНЫЙ СИГНАЛ

В пределах периода он описывается линейной функцией:

Рис. 3. Пилообразный сигнал
Данный сигнал является нечетной функцией, поэтому его ряд Фурье в синусно-косинусной форме будет содержать только синусные слагаемые:

.

Сам ряд Фурье для пилообразного сигнала выглядит следующим образом:

ПОСЛЕДОВАТЕЛЬНОСТЬ ТРЕУГОЛЬНЫХ ИМПУЛЬСОВ

Рис.4. Последовательность треугольных импульсов
Сигнал является четной функцией, поэтому будут присутствовать косинусные составляющие.

Вычислим коэффициенты ряда Фурье:

Сам ряд Фурье имеет следующий вид:

Как видите, в отличие от последовательностей прямоугольных и пилообразных импульсов, для треугольного периодического сигнала амплитуды гармоник убывают пропорционально второй степени номеров гармоник .

Код программы для меандра

N = 8; % число ненулевых гармоник

t = -1:0.01:1; % вектор моментов времени

A = 1; % амплитуда

harmonics = cos(2*pi*nh"*t/T);

Am = 2/pi./nh; % амплитуды гармоник

Am(2:2:end) = -Am(2:2:end); % чередование знаков

s1 = harmonics .* repmat(Am", 1, length(t));

% строки-частичные суммы гармоник

s2 = cumsum(s1);

for k=1:N, subplot(4, 2, k), plot(t, s2(k,:)), end

Р
езультат работы программы

Комментарии : repmat – создание блочной матрицы или многомерного блочного массива из одинаковых блоков. repmat(Am", 1, length(t)) – матрица состоит из 1 блока по вертикали и length(t) блоков по горизонтали, каждый блок является матрицей Am".

Cumsum – расчет частичных сумм элементов.

Subplot (Rows , Cols , N ) команда для вывода нескольких графиков. Графическое окно разбивается на клетки в виде матрицы, имеющей Rows строк, Cols – столбцов, и N клетка становится текущей.

Варианты


варианта

Параметры для сигналов

амплитуда сигнала

период повторения сигналов

длительность сигнала

число ненулевых гармоник

1

7

3

2

10

2

5

4

3

12

3

4

5

4

14

4

3

6

5

16

5

2

8

6

18

6

5

3

2

14

7

4

4

3

16

8

3

5

4

18

9

2

6

5

10

10

7

8

6

12

11

4

4

3

18

12

3

5

4

10

13

2

6

5

12

14

7

8

6

14

15

5

3

2

16

16

7

3

2

12

17

5

4

3

14

18

4

5

4

16

19

3

6

5

18

20

2

8

6

10

21

5

3

2

16

22

4

4

3

18

23

3

5

4

10

24

2

6

5

12

25

7

8

6

14

26

4

4

3

10

27

3

5

4

12

28

2

6

5

14

29

7

8

6

16

30

5

3

2

18
Похожие публикации