Как устроен жесткий. Жесткий диск: принцип работы и основные характеристики. Другие особенности современных винчестеров

Как выглядит современный жёсткий диск (HDD) внутри? Как его разобрать на части? Как называются части и какие функции в общем механизме хранения информации выполняют? Ответы на эти и другие вопросы можно узнать здесь, ниже. Кроме того, мы покажем связь между русскоязычной и англоязычной терминологиями, описывающими компоненты жёстких дисков.

Для наглядности, разберём 3.5-дюймовый SATA диск. Это будет совершенно новый терабайтник Seagate ST31000333AS. Осмотрим нашего подопытного кролика.


Зелёная закреплённая винтами пластина с проступающим узором дорожек, разъёмами питания и SATA называется платой электроники или платой управления (Printed Circuit Board, PCB). Она выполняет функции электронного управления работой жёсткого диска. Её работу можно сравнить с укладкой в магнитные отпечатки цифровых данных и распознание обратно по первому требованию. Например, как прилежный писарь с текстами на бумаге. Чёрный алюминиевый корпус и его содержимое называется гермоблоком (Head and Disk Assembly, HDA). В среде специалистов принято называть его «банкой». Сам корпус без содержимого также называют гермоблоком (base).

Теперь снимем печатную плату (понадобиться отвертка «звёздочка» T-6) и изучим размещённые на ней компоненты.


Первым в глаза бросается большой чип, расположенный посередине – Система на кристалле (System On Chip, SOC). В ней можно выделить два крупных составляющих:

  1. Центральный процессор, который производит все вычисления (Central Processor Unit, CPU). Процессор имеет порты ввода-вывода (IO ports) для управления остальными компонентами, расположенными на печатной плате, и передачи данных через SATA-интерфейс.
  2. Канал чтения/записи (read/write channel) – устройство, преобразующее поступающий с головок аналоговый сигнал в цифровые данные во время операции чтения и кодирующий цифровые данные в аналоговый сигнал при записи. Так же выполняет слежение за позиционированием головок. Иными словами, создает магнитные образы при записи и распознает их при чтении.

Чип памяти (memory chip) представляет собой обычную DDR SDRAM память. Объём памяти определяет размер кэша жёсткого диска. На этой печатной плате установлена память Samsung DDR объемом 32 Мб, что в теории даёт диску кэш в 32 Мб (и именно такой объём приводится в технических характеристиках жёсткого диска), но это не совсем верно. Дело в том, что память логически разделена на буферную память (кэш) и память прошивки (firmware). Процессору требуется некоторый объём памяти для загрузки модулей прошивки. Насколько известно, только производитель HGST указывают действительный объём кэша в описании технических характеристик; относительно остальных дисков, о реальном объёме кэша остаётся только гадать. В спецификации ATA составители не стали расширять ограничение, заложенное в ранних версиях, равное 16 мегабайт. Поэтому, программы не могут отобразить объем более максимального.

Следующий чип – контроллер управления шпиндельным двигателем и звуковой катушкой, перемещающий блок головок (Voice Coil Motor and Spindle Motor controller, VCM&SM controller). На жаргоне специалистов – это «крутилка». Кроме того, этот чип управляет вторичными источниками питания, расположенными на плате, от которых питается процессор и микросхема предусилителя-коммутатора (preamplifier, preamp), расположенная в гермоблоке. Это главный потребитель энергии на печатной плате. Он управляет вращением шпинделя и движением головок. Так же при отключении питания переключает останавливающийся двигатель в режим генерации и полученную энергию подает на звуковую катушку для плавной парковки магнитных головок. Ядро VCM-контроллера может работать даже при температуре в 100°C.

Часть программы управления (прошивки) диска хранится во флэш-памяти (на рисунке обозначено: Flash). При подаче питания на диск микроконтроллер загружает сначала маленькое boot-ПЗУ внутри себя, а дальше переписывает содержимое флэш-чипа в память и приступает к исполнению кода уже из ОЗУ. Без корректно загруженного кода, диск даже не пожелает запускать двигатель. Если на плате отсутствует флэш-чип, значит, он встроен в микроконтроллер. На современных дисках (где-то с 2004 года и новее, однако исключение составляют жёсткие диски Samsung и они же с наклейками от Seagate) flash-память содержит таблицы с кодами настроек механики и головок, которые уникальны для данного гермоблока и не подойдут к другому. Поэтому операция «перекинуть контроллер» всегда заканчивается либо тем, что диск «не определяется в BIOS», либо определяется заводским внутренним названием, но все равно доступ к данным не даёт. Для рассматриваемого диска Seagate 7200.11 утрата оригинального содержимого flash-памяти приводит к полной потере доступа к информации, так как подобрать или угадать настройки не получится (во всяком случае, автору такая методика не известна).

На youtube-канале R.Lab есть несколько примеров перестановки платы с перепайкой микросхемы c неисправной платы на исправную:
PC-3000 HDD Toshiba MK2555GSX PCB change
PC-3000 HDD Samsung HD103SJ PCB change

Датчик удара (shock sensor) реагирует на опасную для диска тряску и посылает сигнал об этом контроллеру VCM. Контроллер VCM немедленно паркует головки и может остановить вращение диска. Теоретически, такой механизм должен защищать диск от дополнительных повреждений, но на практике он не работает, так что не роняйте диски. Ещё при падении может заклинить шпиндельный двигатель, но об этом позже. На некоторых дисках датчик вибрации обладает повышенной чувствительностью, реагируя на малейшие механические колебания. Полученные с датчика данные позволяют контроллеру VCM корректировать движение головок. На таких дисках установлено, кроме основного, ещё два дополнительных датчика вибрации. На нашей плате дополнительные датчики не припаяны, но места под них есть - обозначены на рисунке как «Vibration sensor».

На плате имеется ещё одно защитное устройство – ограничитель переходного напряжения (Transient Voltage Suppression, TVS). Он защищает плату от скачков напряжения. При скачке напряжения TVS перегорает, создавая короткое замыкание на землю. На этой плате установлено два TVS, на 5 и 12 вольт.

Электроника для старых дисков была менее интегрированная, и каждая функция была разделена на одну и более микросхем.


Теперь рассмотрим гермоблок.


Под платой находятся контакты мотора и головок. Кроме того, на корпусе диска имеется маленькое, почти незаметное отверстие (breath hole). Оно служит для выравнивания давления. Многие считают, что внутри жёсткого диска находится вакуум. На самом деле это не так. Воздух нужен для аэродинамического взлета головок над поверхностью. Это отверстие позволяет диску выровнять давление внутри и снаружи гермозоны. С внутренней стороны это отверстие прикрыто фильтром (breath filter), который задерживает частицы пыли и влаги.

Теперь заглянем внутрь гермозоны. Снимем крышку диска.


Сама крышка не представляет собой ничего интересного. Это просто стальная пластина с резиновой прокладкой для защиты от пыли. Наконец, рассмотрим начинку гермозоны.


Информация хранится на дисках, называемых также «блинами», магнитными поверхностями или пластинами (platters). Данные записываются с двух сторон. Но иногда с одной из сторон головка не установлена, либо физически головка присутствует, но отключена на заводе. На фотографии вы видите верхнюю пластину, соответствующую головке с самым большим номером. Пластины изготавливаются из полированного алюминия или стекла и покрываются несколькими слоями различного состава, в том числе ферромагнитным веществом, на котором, собственно, и хранятся данные. Между пластинами, а также над верхней из них, мы видим специальные вставки, называемыми разделителями или сепараторами (dampers or separators). Они нужны для выравнивания потоков воздуха и снижения акустических шумов. Как правило, их изготавливают из алюминия или пластика. Алюминиевые разделители успешнее справляются с охлаждением воздуха внутри гермозоны. Ниже приведен пример модели прохождения потока воздуха внутри гермоблока.


Вид на пластины и сепараторы сбоку.


Головки чтения-записи (heads), устанавливаются на концах кронштейнов блока магнитных головок, или БМГ (Head Stack Assembly, HSA). Парковочная зона – это область, в которой должны находиться головки исправного диска, если шпиндель остановлен. У этого диска, парковочная зона расположена ближе к шпинделю, что видно на фотографии.


На некоторых накопителях, парковка производится на специальных пластиковых парковочных площадках, расположенных за пределами пластин.


Парковочная площадка накопителя Western Digital 3.5”

В случае парковки головок внутри пластин для съёма блока магнитных головок нужен специальный инструмент, без него снять БМГ очень сложно без повреждения. Для внешней парковки можно вставить между головками пластиковые трубочки, подходящие по размеру, и вынуть блок. Хотя, и для этого случая так же есть съемники, но они более простой конструкции.

Жёсткий диск – механизм точного позиционирования, и для его нормальной работы требуется очень чистый воздух. В процессе использования внутри жёсткого диска могут образовываться микроскопические частицы металла и смазки. Для немедленной очистки воздуха внутри диска имеется циркуляционный фильтр (recirculation filter). Это высокотехнологичное устройство, которое постоянно собирает и задерживает мельчайшие частицы. Фильтр находится на пути потоков воздуха, создаваемых вращением пластин


Теперь снимем верхний магнит и посмотрим, что скрывается под ним.


В жёстких дисках используются очень мощные неодимовые магниты. Эти магниты настолько мощны, что могут поднимать вес в 1300 раз больший их собственного. Так что не стоит класть палец между магнитом и металлом или другим магнитом – удар получится очень чувствительным. На этой фотографии изображены ограничители БМГ. Их задача – ограничить движение головок, оставляя их на поверхности пластин. Ограничители БМГ разных моделей устроены по-разному, но их всегда два, они используются на всех современных жёстких дисках. На нашем накопителе второй ограничитель расположен на нижнем магните.

Вот что можно там увидеть.


Ещё мы видим здесь катушку (voice coil), которая является частью блока магнитных головок. Катушка и магниты образуют привод БМГ (Voice Coil Motor, VCM). Привод и блок магнитных головок образуют позиционер (actuator) – устройство, которое перемещает головки.

Чёрная пластиковая деталь сложной формы называется фиксатором (actuator latch). Он бывает двух типов: магнитный и воздушный (air lock). Магнитный работает как простая магнитная защёлка. Высвобождение осуществляется подачей электрического импульса. Воздушная защёлка освобождает БМГ после того, как шпиндельный двигатель наберёт достаточное число оборотов, чтобы давление воздуха отодвинуло фиксатор с пути звуковой катушки. Фиксатор защищает головки от вылета головок в рабочую область. Если по какой-то причине фиксатор со своей функцией не справился (диск уронили или ударили во включенном состоянии), то головки прилипнут к поверхности. Для дисков 3.5“ последующее включение из-за большей мощности мотора просто оторвет головки. А вот у 2.5“ мощность мотора меньше и шансы восстановить данные, высвободив «из плена» родные головки, довольно высоки.

Теперь снимем блок магнитных головок.


Точность и плавность движения БМГ поддерживается прецизионным подшипником. Самая крупная деталь БМГ, изготовленная из алюминиевого сплава, обычно называется кронштейном или коромыслом (arm). На конце коромысла находятся головки на пружинной подвеске (Heads Gimbal Assembly, HGA). Обычно сами головки и коромысла поставляют разные производители. Гибкий кабель (Flexible Printed Circuit, FPC) идёт к контактной площадке, стыкующейся с платой управления.

Рассмотрим составляющие БМГ подробнее.

Катушка, соединенная с кабелем.


Подшипник.


На следующей фотографии изображены контакты БМГ.


Прокладка (gasket) обеспечивает герметичность соединения. Таким образом, воздух может попасть внутрь блока с дисками и головками только через отверстие для выравнивания давления. У этого диска контакты покрыты тонким слоем золота для предотвращения окисления. А вот со стороны платы электроники окисление случается частенько, что приводит к неисправности HDD. Удалить окисление с контактов можно стирательной резинкой (eraser).


Это классическая конструкция коромысла.


Маленькие чёрные детали на концах пружинных подвесов называют слайдерами (sliders). Многие источники указывают, что слайдеры и головки – это одно и то же. На самом же деле слайдер помогает считывать и писать информацию, поднимая головку над поверхностью магнитных дисков. На современных жёстких дисках головки двигаются на расстоянии 5-10 нанометров от поверхности. Для сравнения: человеческий волос имеет диаметр около 25000 нанометров. Если под слайдер попадёт какая-нибудь частица, это может привести к перегреву головок из-за трения и выходу их из строя, именно поэтому так важна чистота воздуха внутри гермозоны. Ещё попадание пыли может вызвать царапины. От них образуются новые пылинки, но уже магнитные, которые прилипают к магнитному диску и вызывают новые царапины. Это приводит к тому, что диск быстро покрывается царапинами или на жаргоне «запиливается». В таком состоянии ни тонкий магнитный слой, ни магнитные головки уже не работают, и жёсткий диск стучит (клик смерти).

Сами считывающие и записывающие элементы головки находятся на конце слайдера. Они так малы, что разглядеть их можно только в хороший микроскоп. Ниже приведен пример фотографии (справа) через микроскоп и схематическое изображение (слева) взаимного расположения пишущего и читающего элементов головки.


Рассмотрим поверхность слайдера поближе.


Как видите, поверхность слайдера не плоская, на ней имеются аэродинамические канавки. Они помогают стабилизировать высоту полёта слайдера. Воздух под слайдером образует воздушную подушку (Air Bearing Surface, ABS). Воздушная подушка поддерживает почти параллельный поверхности блина полёт слайдера.

Вот ещё одно изображение слайдера.


Здесь хорошо видны контакты головок.

Это ещё одна важная часть БМГ, которая пока не обсуждалась. Она называется предусилителем (preamplifier, preamp). Предусилитель – это чип, управляющий головками и усиливающий поступающий к ним или от них сигнал.


Предусилитель располагают прямо в БМГ по очень простой причине - сигнал, идущий с головок, очень слаб. На современных дисках он имеет частоту более 1 ГГц. Если вынести предусилитель за пределы гермозоны, такой слабый сигнал сильно затухнет по пути к плате управления. Установить же усилитель прямо на голове нельзя, так как она существенно нагревается во время работы, что делает не возможным работу полупроводникового усилителя, вакуумно-ламповых усилителей таких малых размеров ещё не придумали.

От предусилителя к головкам (справа) ведёт больше дорожек, чем к гермозоне (слева). Дело в том, что жёсткий диск не может одновременно работать более чем с одной головкой (парой пишущих и считывающих элементов). Жёсткий диск посылает сигналы на предусилитель, и он выбирает головку, к которой в данный момент обращается жёсткий диск.

Хватит о головках, давайте разбирать диск дальше. Снимем верхний сепаратор.

Вот как он выглядит.


На следующей фотографии вы видите гермозону со снятыми верхним разделителем и блоком головок.


Стал виден нижний магнит.

Теперь прижимное кольцо (platters clamp).


Это кольцо удерживает блок пластин вместе, не давая им двигаться друг относительно друга.

Блины нанизаны на шпиндель (spindle hub).


Теперь, когда блины ничто не удерживает, снимем верхний блин. Вот что находится под ним.


Теперь понятно, за счёт чего создается пространство для головок – между блинами находятся разделительные кольца (spacer rings). На фотографии виден второй блин и второй сепаратор.

Разделительное кольцо – высокоточная деталь, изготовленная из немагнитного сплава или полимеров. Снимем его.


Вытащим из диска все остальное, чтобы осмотреть дно гермоблока.


Так выглядит отверстие для выравнивания давления. Оно располагается прямо под воздушным фильтром. Рассмотрим фильтр внимательнее.

Так как поступающий снаружи воздух обязательно содержит пыль, фильтр имеет несколько слоёв. Он гораздо толще циркуляционного фильтра. Иногда он содержит частицы силикагеля для борьбы с влажностью воздуха. Однако, если жёсткий диск поместить в воду, то она наберется внутрь через фильтр! И это совсем не означает, что попавшая внутрь вода будет чистая. На магнитных поверхностях кристаллизуются соли и наждачка вместо пластин обеспечена.

Немного подробнее про шпиндельный двигатель. Схематически его конструкция показана на рисунке.


Внутри spindle hub закреплен постоянный магнит. Обмотки статора, меняя магнитное поле, заставляют ротор вращаться.


Моторы бывают двух видов, с шариковыми подшипниками и с гидродинамическими (Fluid Dynamic Bearing, FDB). Шариковые перестали использовать более 10 лет назад. Это связано с тем, что у них биение высокое. В гидродинамическом подшипнике биения намного ниже и работает он значительно тише. Но есть и пару минусов. Во-первых, он может заклинить. С шариковыми такого явления не происходило. Шариковые подшипники если и выходили из строя, то начинали громко шуметь, но информация хоть медленно, но читалась. Сейчас же, в случае клина подшипника, нужно при помощи специального инструмента снять все диски и установить их на исправный шпиндельный двигатель. Операция очень сложная и редко приводит к удачному восстановлению данных. Клин может возникнуть от резкого изменения положения за счет большого значения силы Кориолиса, действующей на ось и приводящей к ее сгибанию. Например, есть внешние 3.5” диски в коробочке. Стояла коробочка вертикально, задели, упала горизонтально. Казалось бы, не далеко улетел то?! А нет - клин двигателя, и никакой информации уже не достать.

Во-вторых, из гидродинамического подшипника может вытечь смазка (она там жидкая, ее довольно много, в отличие от смазки-геля, используемой шариковых), и попасть на магнитные пластины. Чтобы предотвратить попадание смазки на магнитные поверхности используют смазку с частицами, имеющими магнитные свойства и улавливающими их магнитные ловушки. Еще используют вокруг места возможной протечки абсорбционное кольцо. Вытеканию способствует перегрев диска, поэтому важно следить за температурным режимом эксплуатации.


Уточнение связи между русскоязычной и англоязычной терминологией выполнено Леонидом Воржевым.


Обновление 2018, Сергей Яценко

Перепечатка или цитирование разрешены при условии сохранения ссылки на перво

Жёсткий диск («винчестер», hdd, hard disc drive — eng.) — накопитель информации основанный на магнитных пластинах и эффекте магнетизма.

Применяется повсеместно в персональных компьютерах, ноутбуках, серверах и так далее.

Устройство жёсткого диска. Как жёсткий диск работает.



В полу герметичном блоке находятся двусторонние пластины, с нанесённым на них магнитным слоем , посаженные на вал двигателя и вращающиеся со скоростью от 5400 оборотов в минуту.Блок не совсем герметичен, но самое главное он не пропускает мелкие частицы и не допускает перепадов влажности . Всё это пагубно сказывается на сроке службы и качестве работы жёсткого диска.

В современных жёстких дисках, для вала используются . Это даёт меньший шум при работе, значительно увеличивает долговечность и уменьшает шанс заклинивания вала из-за разрушившегося .

Считывание и запись производится с помощью блока головок .

В рабочем состоянии, головки парят над поверхностью диска на расстоянии ~10нм . Они имеют аэродинамическую форму и поднимаются над поверхностью диска за счёт восходящего потока от крутящейся пластины. Магнитные головки могут находится с двух сторон пластины, если с каждой стороны магнитного диска нанесены магнитные слои.

Соединённый блок головок имеет фиксированное положение , то есть головки перемещаются все вместе.

Всеми головками, управляет специальный привод основанный на электромагнетизме .

Неодимовый магнит создаёт магнитное поле , в котором с высокой скоростью реакции под воздействием тока, может перемещаться блок головок. Это лучший и самый быстрый вариант перемещения блока головок, а ведь когда то блок головок перемещался механически, с помощью шестерёнок.

Когда диск выключается, чтобы головки не опустились на диск и не повредили его, они убираются в зону парковки головок (парковочная зона, parking zone).

Это также, позволяет без особых ограничений транспортировать выключенные жёсткие диски. В выключенном состоянии, диск может выдержать большие нагрузки и не повредиться. Во включенном состоянии, даже небольшой толчёк под определённым углом может разрушить магнитный слой пластины или повредить головки при касании о диск.

Помимо герметичной части, у современных жёстких дисков есть наружная плата управления . Когда то, все платы управления были вставлены в материнскую плату компьютера в слоты расширения. Это было не удобно в плане универсальности и возможностей. Сейчас у жёстких дисков, вся управляющая диском электроника, и интерфейса расположены на небольшой плате в нижней части жёсткого диска. Благодаря этому, можно настроить каждый диск под определённые, выгодные с точки зрения его строения параметры, давая ему выигрыш в скорости, либо более тихую работу к примеру.

Для подключения интерфейса и питания используются стандартные общепринятые разъёмы / и Molex /Power SATA .

Особенности.

Жёсткие диски являются самыми ёмкими хранителями информации и относительно надёжными . Объёмы дисков постоянно растут, но в последнее время это связано с некоторыми сложностями и для дальнейшего расширения объёма, требуются новые технологии. Можно сказать, что жёсткие диски практически вышли на прямую в достижении максимальных возможностей. Распространению жёстких дисков в основном поспособствовало соотношение ценаобъём . В большинстве случаев, гигабайт объёма диска стоит меньше чем 2.5 рубля .

Плюсы и минусы жёстких дисков в сравнении с .

До появления твёрдотельных SSD (solid state drive ) — накопителей, у жёстких дисков не было конкурентов. Теперь у жёстких дисков есть направление куда нужно стремиться.

Минусы жёстких дисков (hard drive)(ssd) накопителями:

  • низкая скорость последовательного чтения
  • низкая скорость доступа
  • низкая скорость чтения
  • немного более низкая скорость записи
  • вибрации и небольшой шум при работе

Хотя с другой стороны, у жёстких дисков есть другие, более весомые преимущества, к которым SSD накопителям стремиться и стремиться.

Плюсы жёстких дисков (hard drive) в сравнении с твёрдотельными (ssd) накопителями:

  • значительно лучший показатель объёмцена
  • лучший показатель надёжности
  • больший максимальный объём
  • при выходе из строя, в разы больший шанс восстановить данные
  • лучший вариант для использования в медиа центрах, благодаря компактности и большому объёму 2.5 накопителей

О том, на что стоит обращать внимание при выборе жёсткого диска, можно посмотреть в нашей статье ««. Если вам необходим ремонт жесткого диска или восстановление информации, можно обратиться к .

HDD, жёсткий диск, винчестер — всё это названия одного хорошо известного устройства хранения данных. В этом материале мы расскажем вам о технической основе таких накопителей, о том, каким образом на них может храниться информация, и об остальных технических нюансах и принципах функционирования.

Исходя из полного названия данного запоминающего устройства — накопитель на жёстких магнитных дисках (НЖМД) — можно без особых усилий понять, что лежит в основе его работы. Благодаря своей дешевизне и долговечности эти носители информации устанавливают в различные компьютеры: ПК, ноутбуки, серверы, планшеты и т.д. Отличительной чертой HDD является возможность хранить огромные объёмы данных, обладая при этом совсем небольшими габаритами. Ниже мы расскажем о его внутреннем устройстве, принципах работы и прочих особенностях. Приступим!

Гермоблок и плата электроники

Зелёная стеклоткань и дорожки из меди на ней, вместе с разъёмами для подключения блока питания и гнездом SATА называются платой управления (Printed Circuit Board, PCB). Данная интегральная схема служит для синхронизации работы диска с ПК и руководством всех процессов внутри HDD. Корпус из алюминия чёрного цвета и то, что внутри него, называется герметичным блоком (Head and Disk Assembly, HDA).

В центре интегральной схемы расположен чип большого размера — это микроконтроллер (Micro Controller Unit, MCU). В сегодняшних HDD микропроцессор содержит в себе два компонента: центральный вычислительный блок (Central Processor Unit, CPU), который занимается всеми расчётами, и канал чтения и записи специальное устройство, переводящее аналоговый сигнал с головки в дискретный, когда она занята чтением и наоборот — цифровой в аналоговый во время записи. Микропроцессор обладает портами ввода/вывода , при помощи которых он управляет остальными элементами, расположенными на плате, и совершает обмен информацией через SATA-подключение.

Другой чип, расположенный на схеме, является DDR SDRAM памятью (memory chip). Её количество предопределяет объём кеша винчестера. Данный чип разделён на память прошивки, частично содержащуюся во флеш-накопителе, и буферную, необходимую процессору для того, чтобы загружать модули прошивки.

Третий чип называется контроллером управления двигателем и головками (Voice Coil Motor controller, VCM controller). Он управляет дополнительными источниками электропитания, которые расположены на плате. От них получают питание микропроцессор и предусилитель-коммутатор (preamplifier), содержащийся в герметичном блоке. Этот контроллер требует больше энергии, чем остальные компоненты на плате, так как отвечает за вращение шпинделя и движение головок. Ядро предусилителя-коммутатора способно работать, будучи нагретым до 100° C! Когда на НЖМД подаётся питание, микроконтроллер выгружает содержимое флеш-микросхемы в память и начинает выполнение заложенных в неё инструкций. Если коду не удастся должным образом загрузиться, то HDD не сможет даже начать раскрутку. Также флеш-память может быть встроена в микроконтроллер, а не содержаться на плате.

Расположенный на схеме датчик вибрации (shock sensor) определяет уровень тряски. Если он сочтёт её интенсивность опасной, то будет послан сигнал контроллеру управления двигателем и головками, после чего он немедленно паркует головки или вовсе останавливает вращение HDD. В теории, данный механизм призван обеспечивать защиту HDD от различных механических повреждений, правда, на практике у него это не сильно выходит. Поэтому не стоит ронять жёсткий диск, ведь это способно повлечь за собой неадекватную работу вибродатчика, что может стать причиной полной неработоспособности устройства. Некоторые НЖМД обладают сверхчувствительными к вибрации датчиками, которые реагируют на малейшее её проявление. Данные, которые получает VCM, помогают в корректировке движения головок, поэтому диски оборудуются как минимум двумя такими датчиками.

Ещё одно устройство, созданное для защиты HDD — ограничитель переходного напряжения (Transient Voltage Suppression, TVS), призванный предотвращать возможный выход из строя в случае скачков напряжения. На одной схеме таких ограничителей может быть несколько.

Поверхность гермоблока

Под интегральной платой располагаются контакты от моторов и головок. Тут же можно увидеть почти невидимое техническое отверстие (breath hole), которое выравнивает давление внутри и снаружи герметичной зоны блока, разрушающее миф о том, что внутри винчестера находится вакуум. Внутренняя его область покрыта специальным фильтром, который не пропускает пыль и влагу непосредственно в HDD.

Внутренности гермоблока

Под крышкой герметичного блока, представляющей собой обычный пласт металла и резиновую прокладку, которая защищает его от попадания влаги и пыли, находятся магнитные диски.

Они также могут называться блинами или пластинами (platters). Диски обычно создаются из стекла или алюминия, который был предварительно отполирован. Затем они покрываются несколькими слоями различных веществ, в числе которых присутствует и ферромагнетик — благодаря ему и имеется возможность записывать и хранить информацию на жёстком диске. Между пластинами и над самым верхним блином располагаются разделители (dampers or separators). Они выравнивают потоки воздуха и снижают акустические шумы. Обычно изготавливаются из пластика или алюминия.

Сепараторные пластины, которые были изготовлены из алюминия, лучше справляются с понижением температуры воздуха внутри герметичный зоны.

Блок магнитных головок

На концах кронштейнов, находящихся в блоке магнитных головок (Head Stack Assembly, HSA), расположены головки чтения/записи. Когда шпиндель остановлен, они должны находиться в препаровочной области — это место, где располагаются головки исправного жёсткого диска в то время, когда вал не работает. В некоторых HDD парковка происходит на пластиковых препаровочных областях, которые расположены вне пластин.

Для нормальной работы жёсткого диска требуется как можно более чистый воздух, содержащий минимум сторонних частиц. Со временем в накопителе образовываются микрочастицы смазки и металла. Чтобы их выводить, HDD оборудуются циркуляционными фильтрами (recirculation filter), которые постоянно собирают и задерживают очень маленькие частицы веществ. Они устанавливаются на пути воздушных потоков, которые образуются из-за вращения пластин.

В НЖМД устанавливают неодимовые магниты, способные притягивать и удерживать вес, который может больше собственного в 1300 раз. Предназначение этих магнитов в HDD — ограничение движения головок путем удержания их над пластиковыми или алюминиевыми блинами.

Ещё одной частью блока магнитных головок является катушка (voice coil). Вместе с магнитами она образует привод БМГ , который вместе с БМГ составляет позиционер (actuator) — устройство, перемещающее головки. Защитный механизм для этого устройства называется фиксатором (actuator latch). Он освобождает БМГ, как только шпиндель наберёт достаточное число оборотов. В процессе освобождения участвует давление потока воздуха. Фиксатор предотвращает какие-либо движения головок в препаровочном состоянии.

Под БМГ будет находиться прецизионный подшипник. Он поддерживает плавность и точность данного блока. Тут же находится выполненная из алюминиевого сплава деталь, которая называется коромыслом (arm). На её конце, на пружинной подвеске, расположены головки. От коромысла идет гибкий кабель (Flexible Printed Circuit, FPC), ведущий в контактную площадку, которая соединяется с платой электроники.

Вот так выглядит катушка, которая соединена с кабелем:

Здесь можно увидеть подшипник:

Вот тут изображены контакты БМГ:

Прокладка (gasket) помогает обеспечить герметичность сцепления. Благодаря этому в блок с дисками и головками воздух попадает только через отверстие, которое выравнивает давление. Контакты данного диска покрыты тончайшей позолотой, что улучшает проводимость.

Типичная сборка кронштейна:

На окончаниях пружинных подвесов находятся малогабаритные детали — слайдеры (sliders). Они помогают считывать и записывать данные, поднимая головку над пластинами. В современных накопителях головки работают, располагаясь на расстоянии 5-10 нм от поверхности металлических блинов. Элементы считывания и записи информации расположены на самых концах слайдеров. Они настолько малы, что увидеть их можно только воспользовавшись микроскопом.

Эти детали не являются абсолютно плоскими, так как имеют на себе аэродинамические канавки, служащие для стабилизации высоты полёта слайдера. Воздух под ним создаёт подушку (Air Bearing Surface, ABS), которая поддерживает параллельный поверхности пластины полёт.

Предусилитель — чип, отвечающий за управление головками и усиление сигнала к ним или от них. Расположен он непосредственно в БМГ, потому как сигнал, который производят головки, обладает недостаточной мощностью (около 1 ГГц). Без усилителя в герметичной зоне он бы просто рассеялся по пути к интегральной схеме.

От этого устройства в сторону головок идёт больше дорожек, нежели к герметичной зоне. Объясняется это тем, что жёсткий диск может взаимодействовать только с одной из них в определённый момент времени. Микропроцессор отправляет запросы предусилителю, чтобы он выбрал нужную ему головку. От диска к каждой из них идёт по несколько дорожек. Они отвечают за заземление, чтение и запись, управление миниатюрными приводами, работу со специальным магнитным оборудованием, которое может управлять слайдером, что позволяет увеличить точность расположения головок. Одна из них должна вести к нагревателю, который регулирует высоту их полёта. Работает эта конструкция так: из нагревателя тепло передаётся подвеске, которая соединяет слайдер и коромысло. Подвес создаётся из сплавов, которые имеют отличающиеся параметры расширения от поступающего тепла. При повышении температуры он изгибается в сторону пластины, тем самым уменьшая расстояние от неё до головки. При уменьшении количества тепла, происходит обратное действие — головка отдаляется от блина.

Вот таким образом выглядит верхний разделитель:

На этой фотографии находится герметичная зона без блока головок и верхнего сепаратора. Также можно заметить нижний магнит и прижимное кольцо (platters clamp):

Данное кольцо сдерживает блоки блинов вместе, предотвращая всякое их движение относительно друг друга:

Сами пластины нанизаны на вал (spindle hub):

А вот что находится под верхней пластиной:

Как можно понять, место для головок создаётся при помощи специальных разделительных колец (spacer rings). Это высокоточные детали, которые производятся из немагнитных сплавов или полимеров:

На дне гермоблока находится пространство для выравнивания давления, расположенное прямо под воздушным фильтром. Воздух, который находится вне герметичного блока, безусловно, содержит в себе частицы пыли. Для решения данной проблемы, устанавливается многослойный фильтр, который гораздо толще того же циркулярного. Иногда на нём можно обнаружить следы силикатного геля, который должен абсорбировать в себя всю влагу:

Заключение

В этой статье было приведено подробное описание внутренностей HDD. Надеемся, этот материал был вам интересен и помог узнать много нового из сферы компьютерного оборудования.

Как хорошо известно большинству пользователей персонального компьютера, все данные в ПК хранятся на жестком диске - устройстве хранения информации произвольного доступа, которое работает на основе принципа магнитной записи. Современные жесткие диски способны вместить в себе информацию, общим объемом до 6 терабайт (емкость самого вместительного на данный момент диска, выпущенного фирмой HGST), что еще десять лет назад казалось невозможным. Помимо того, что жесткий диск компьютера обладает колоссальной емкостью, благодаря применяющимся в его работе сложным современным технологиям он еще и позволяет получать практически мгновенный доступ к хранящейся на нем информации, без чего продуктивная работа ПК была бы невозможной. Как же устроено это чудо современной техники, и каким образом оно работает?

Устройство жесткого диска

Если снять верхнюю крышку жесткого диска, вы увидите лишь плату электроники и еще одну крышку, под которой находится герметическая зона. Именно в этой гермозоне и расположены основные элементы HDD. Несмотря на распространенное мнение, что гермозона жесткого диска содержит вакуум, это вовсе не так – внутри гермозона заполнена очищенным от пыли сухим воздухом, а в крышке обычно имеется небольшое отверстие с очищающим фильтром, предназначенное для выравнивания давления воздуха внутри гермозоны.

В целом жесткий диск состоит из следующих основных компонентов:

Принцип работы жесткого диска

Что же происходит, когда на жесткий диск компьютера подается питание и он начинает работать? Следуя команде электронного контроллера, двигатель жесткого диска начинает вращаться, приводя тем самым в движение и магнитные диски, которые жестко прикреплены к его оси. Как только скорость вращения шпинделя достигает значения, достаточного для того, чтобы над поверхностью диска образовался постоянный поток воздуха, который не даст считывающейся головке упасть на поверхность накопителя, механизм коромысла начинает двигать считывающие головки, и они зависают над поверхностью диска. При этом расстояние от считывающей головки до магнитного слоя накопителя составляет всего лишь около 10 нанометров, что равно одной миллиардной части метра.

Первым делом при включении жесткого диска происходит считывание с накопителя служебной информации (ее также называют «нулевой дорожкой»), которая содержит сведения о диске и его состоянии. Если сектора со служебной информацией повреждены, то винчестер не будет работать.

Затем начинается непосредственно работа с данными, расположенными на диске. Частицы ферромагнитного материала, которым покрыта поверхность диска, под воздействием магнитной головки условно формируют биты – единицы хранения цифровой информации. Данные на жестком диске распределены по дорожкам, представляющим собой кольцевую область на поверхности одного магнитного диска. Дорожка в свою очередь поделена на одинаковые отрезки, называемые секторами. Таким образом, паря над рабочей поверхностью диска, магнитная головка может посредством изменения магнитного поля осуществлять запись данных строго в определенное место накопителя, а с помощью улавливания магнитного потока происходит считывание информации по секторам.

Форматирование жесткого диска

Для того, чтобы на жесткий диск можно было наносить данные, его предварительно подвергают процессу форматирования. Также форматирование иногда требуется при переустановке операционной системы, правда во втором случае форматируется не весь диск, а лишь один его логический раздел.

Во время форматирования на диск наносится служебная информация, а также данные о нахождении секторов и треков на поверхности диска. Это необходимо для точного позиционирования магнитных головок при работе с жестким диском.

Характеристики жесткого диска

Современный рынок жестких дисков предлагает на выбор самые разнообразные модели винчестеров, отличающиеся между собой по различным техническим параметрам. Вот основные характеристики, по которым различаются жесткие диски:

  • Интерфейс подключения. Большинство современных жестких дисков подключаются к материнской плате посредством интерфейса SATA, однако встречаются модели и с другими типами подключений: eSATA, FireWire, Thunderbolt и IDE.
  • Емкость. Величина, характеризующая количество информации, способное поместиться на жестком диске. На данный момент наибольшей популярностью пользуются накопители емкостью 500 Гб и 1 Тб.
  • Форм-фактор. Современные жесткие диски выпускают в двух физических размерах: 2,5 дюйма и 3,5 дюйма. Первые предназначены для использования в ноутбуках и компактных версиях ПК, вторые используются в обычных настольных компьютерах.
  • Скорость вращения шпинделя. Чем выше скорость вращения шпинделя жесткого диска, тем быстрее он работает. Основная масса винчестеров на рынке имеют скорость вращения 5400 или 7200 оборотов за минуту, однако встречаются также диски со скоростью вращения шпинделя 10000 об/мин.
  • Объем буфера. Для сглаживания разницы в скорости чтения/записи и передачи через интерфейс в жестких дисках используется промежуточная память, именуемая буфером. Объем буфера составляет от 8 до 128 мегабайт.
  • Время произвольного доступа. Это время, которое требуется для выполнение операции по позиционированию магнитной головки на произвольный участок поверхности жесткого диска. Может составлять от 2,5 до 16 миллисекунд.

Почему жесткий диск называют винчестером?

Согласно одной из версий, свое неофициальное прозвище «винчестер» жесткий диск получил в 1973 году, когда был выпущен первый в мире HDD, в котором считывающие аэродинамические головки размещались в одной герметичной коробке с магнитными пластинами. Данный накопитель имел емкость 30 Мбайт плюс 30 Мбайт в сменном отсеке, из-за чего инженеры, которые трудились над его разработкой дали ему кодовое название 30-30, что было созвучно с обозначением популярного ружья, использующего патрон.30-30 Winchester. В начале девяностых годов название «винчестер» вышло из употребления в странах Европы и США, но до сих пор пользуется популярностью в русскоязычных странах. Также нередко можно услышать более сокращенную сленговую версию названия винчестер – «винт», употребляемую в основном компьютерными специалистами.

Если рассматривать жесткий диск в целом, то он состоит из двух основных частей: это плата электроники, на которой располагается так сказать "мозг" жесткого диска. На нем расположены процессор, так же присутствует управляющая программа, оперативное запоминающее устройство, усилитель записи и чтения. К механической части относятся такие части как блок магнитных головок имеющих аббревиатуру БМГ, двигатель, который придает вращение пластинам, ну и конечно же сами пластины. Давайте рассмотрим каждую часть более детально.

Гермоблок.

Гермоблок он же корпус жесткого диска - предназначен для крепления всех деталей, а так же выполняет функцию защиты от попадания частиц пыли на поверхность пластин. Стоит отметить что вскрытие гермоблока, можно осуществлять только в специально подготовленном для этого помещении, во избежание как раз таки попадания пыли и грязи внутрь корпуса.

Интегральная схема.

Интегральная схема или плата электроники синхронизирует работу жесткого диска с компьютером и управляет всеми процессами, в частности она поддерживает постоянной скорость вращения шпинделя и соответственно пластины, которая осуществляется двигателем.

Электромотор.

Электромотор или двигатель вращает пластины: около 7200 оборотов в секунду (взято среднее значение, есть винчестеры на которых скорость выше и доходит до 15000 оборотов в секунду, а есть и с меньшей скоростью около 5400, от скорости вращения пластин зависит скорость доступа к нужной информации на жестком диске).

Коромысло.

Коромысло предназначено для записи и чтения информации с пластин жесткого диска. Конец коромысла разделен и на нем находится блок магнитных головок, это сделано для того, что бы можно было записывать и считывать информацию с нескольких пластин.

Блок магнитных головок.

В состав коромысла входит блок магнитных головок, который довольно часто выходит из строя, но это "часто" параметр очень условный. Магнитные головки располагаются сверху и снизу пластин и служат для непосредственного считывания информации с платин, расположенных на жестком диске.

Пластины.

На пластинах непосредственно храниться информация, они изготавливаются из таких материалов как, алюминий, стекло и керамика. Самое большое распространение получил алюминий, а вот из двух остальных материалов изготавливают, так называемые "элитные диски". Первые выпускаемые пластины покрывались окисью железа, но этот ферромагнетик имел большой недостаток. Диски покрытые таким веществом имели небольшую износостойкость. На данный момент большинство производителей жестких дисков покрывают пластины кобальтом хрома, у которого запас прочности на порядок выше, чем у окиси железа. Пластисны крепятся на шпиндель на одинаковом друг от друга расстоянии, такая конструкция имеет название "пакет". Под дисками располагается двигатель или электромотор.

Каждая сторона пластины разбита на дорожки, они в свою очередь разделены на сектора или по другому блоки, все дорожки одного диаметра представляют из себя цилиндр.

Все современные винчестеры имеют так называемый "инженерный цилиндр", на нем хранятся служебная информация, такая как модель hdd, серийный номер и др. Эта информация предназначена для считывания компьютером.

Принцип работы жесткого диска

Основные принципы работы жесткого диска мало изменились со дня его создания. Устройство винчестера очень похоже на обыкновенный проигрыватель грампластинок. Только под корпусом может быть несколько пластин, насаженных на общую ось, и головки могут считывать информацию сразу с обеих сторон каждой пластины. Скорость вращения пластин постоянна и является одной из основных характеристик. Головка перемещается вдоль пластины на некотором фиксированном расстоянии от поверхности. Чем меньше это расстояние, тем больше точность считывания информации, и тем больше может быть плотность записи информации.

Взглянув на накопитель на жестком диске, вы увидите только прочный металлический корпус. Он полностью герметичен и защищает дисковод от частичек пыли, которые при попадании в узкий зазор между головкой и поверхностью диска могут повредить чувствительный магнитный слой и вывести диск из строя. Кроме того, корпус экранирует накопитель от электромагнитных помех. Внутри корпуса находятся все механизмы и некоторые электронные узлы. Механизмы - это сами диски, на которых хранится информация, головки, которые записывают и считывают информацию с дисков, а также двигатели, приводящие все это в движение.

Диск представляет собой круглую пластину с очень ровной поверхностью чаще из алюминия, реже - из керамики или стекла, покрытую тонким ферро магнитным слоем. Во многих накопителях используется слой оксида железа (которым покрывается обычная магнитная лента), но новейшие модели жестких дисков работают со слоем кобальта толщиной порядка десяти микрон. Такое покрытие более прочно и, кроме того, позволяет значительно увеличить плотность записи. Технология его нанесения близка к той, которая используется при производстве интегральных микросхем.

Количество дисков может быть различным - от одного до пяти, количество рабочих поверхностей, соответственно, вдвое больше (по две на каждом диске). Последнее (как и материал, использованный для магнитного покрытия) определяет емкость жесткого диска. Иногда наружные поверхности крайних дисков (или одного из них) не используются, что позволяет уменьшить высоту накопителя, но при этом количество рабочих поверхностей уменьшается и может оказаться нечетным.

Магнитные головки считывают и записывают информацию на диски. Принцип записи в общем схож с тем, который используется в обычном магнитофоне. Цифровая информация преобразуется в переменный электрический ток, поступающий на магнитную головку, а затем передается на магнитный диск, но уже в виде магнитного поля, которое диск может воспринять и "запомнить".

Магнитное покрытие диска представляет собой множество мельчайших областей самопроизвольной (спонтанной) намагниченности. Для наглядности представьте себе, что диск покрыт слоем очень маленьких стрелок от компаса, направленных в разные стороны. Такие частицы-стрелки называются доменами. Под воздействием внешнего магнитного поля собственные магнитные поля доменов ориентируются в соответствии с его направлением. После прекращения действия внешнего поля на поверхности диска образуются зоны остаточной намагниченности. Таким образом сохраняется записанная на диск информация. Участки остаточной намагниченности, оказавшись при вращении диска напротив зазора магнитной головки, наводят в ней электродвижущую силу, изменяющуюся в зависимости от величины намагниченности.

Пакет дисков, смонтированный на оси-шпинделе, приводится в движение специальным двигателем, компактно расположенным под ним. Для того, чтобы сократить время выхода накопителя в рабочее состояние, двигатель при включении некоторое время работает в форсированном режиме. Поэтому источник питания компьютера должен иметь запас по пиковой мощности. Теперь о работе головок. Они перемещаются с помощью шагового двигателя и как бы "плывут" на расстоянии в доли микрона от поверхности диска, не касаясь его. На поверхности дисков в результате записи информации образуются намагниченные участки, в форме концентрических окружностей.

Они называются магнитными дорожками. Перемещаясь, головки останавливаются над каждой следующей дорожкой. Совокупность дорожек, расположенных друг под другом на всех поверхностях, называют цилиндром. Все головки накопителя перемещаются одновременно, осуществляя доступ к одноименным цилиндрам с одинаковыми номерами.

Похожие публикации