Уровни управления и протоколы модели osi. Модель взаимодействия открытых систем (OSI)

доступ к сетевой среде. В то же время, канальный уровень управляет процессом размещения передаваемых данных в физической среде. Поэтому канальный уровень разделен на 2 подуровня ( рис. 5.1): верхний подуровень управления логическим каналом передачи данных ( Logical Link Control - LLC ), являющийся общим для всех технологий, и нижний подуровень управления доступом к среде ( Media Access Control - MAC ). Кроме того, средства канального уровня позволяют обнаруживать ошибки в передаваемых данных.


Рис. 5.1.

Взаимодействие узлов локальных сетей происходит на основе протоколов канального уровня. Передача данных в локальных сетях происходит на сравнительно короткие расстояния (внутри зданий или между близко расположенными зданиями), но с высокой скоростью (10 Мбит/с - 100 Гбит/с). Расстояние и скорость передачи данных определяется аппаратурой соответствующих стандартов.

Международным институтом инженеров по электротехнике и радиоэлектронике (Institute of Electrical and Electronics Engineers - IEEE ) было разработано семейство стандартов 802.х, которое регламентирует функционирование канального и физического уровней семиуровневой модели ISO/OSI . Ряд этих протоколов являются общими для всех технологий, например стандарт 802.2, другие протоколы (например, 802.3, 802.3u, 802.5) определяют особенности технологий локальных сетей.

Подуровень LLC реализуется программными средствами . На подуровне LLC существует несколько процедур, которые позволяют устанавливать или не устанавливать связь перед передачей кадров, содержащих данные, восстанавливать или не восстанавливать кадры при их потере или обнаружении ошибок. Подуровень LLC реализует связь с протоколами сетевого уровня , обычно с протоколом IP . Связь с сетевым уровнем и определение логических процедур передачи кадров по сети реализует протокол 802.2. Протокол 802.1 дает общие определения локальных вычислительных сетей, связь с моделью ISO/OSI . Существуют также модификации этого протокола.

Подуровень МАС определяет особенности доступа к физической среде при использовании различных технологий локальных сетей. Каждой технологии МАС-уровня (каждому протоколу: 802.3, 802.3u, 802.3zи др.) соответствует несколько вариантов спецификаций (протоколов) физического уровня ( рис. 5.1). Спецификация технологии МАС-уровня - определяет среду физического уровня и основные параметры передачи данных ( скорость передачи , вид среды, узкополосная или широкополосная).

На канальном уровне передающей стороны формируется кадр , в который инкапсулируется пакет . В процессе инкапсуляции к пакету сетевого протокола, например IP , добавляется заголовок и концевик (трейлер) кадра. Таким образом, кадр любой сетевой технологии состоит из трех частей:

  • заголовка ,
  • поля данных , где размещен пакет,
  • концевика .

На приемной стороне реализуется обратный процесс декапсуляции, когда из кадра извлекается пакет.

Заголовок включает разделители кадров, поля адресов и управления. Разделители кадров позволяют определить начало кадра и обеспечить синхронизацию между передатчиком и приемником. Адреса канального уровня являются физическими адресами. При использовании Ethernet -совместимых технологий адресацию данных в локальных сетях осуществляют МАС-адреса, которые обеспечивают доставку кадра узлу назначения.

Концевик содержит поле контрольной суммы ( Frame Check Sequence - FCS ), которая вычисляется при передаче кадра с использованием циклического кода CRC . На приемной стороне контрольная сумма кадра вычисляется вновь и сравнивается с принятой. Если они совпадают, то считают, что кадр передан без ошибок. При расхождении значений FCS кадр отбрасывается и требуется его повторная передача.

При передаче по сети кадр последовательно проходит целый ряд соединений, характеризующихся разной физической средой. Например, при передаче данных с Узла А на Узел В ( рис. 5.2) данные последовательно проходят через: соединение Ethernet между Узлом А и маршрутизатором А (медь, неэкранированная витая пара ), соединение между маршрутизаторами А и В (волоконно-оптический кабель ), медный кабель последовательного соединения " точка-точка " между маршрутизатором В и беспроводной точкой доступа WAP , беспроводное соединение ( радиоканал ) между WAP и конечным Узлом В. Поэтому для каждого соединения формируется свой кадр специфического формата.


Рис. 5.2.

Пакет, подготовленный Узлом А, инкапсулируется в кадр локальной сети, который передается в маршрутизатор А. Маршрутизатор декапсулирует пакет из принятого кадра, определяет на какой выходной интерфейс передать пакет, затем формирует новый кадр для передачи по оптической среде. Маршрутизатор В декапсулирует пакет из принятого кадра, определяет на какой выходной интерфейс передать пакет, затем формирует новый кадр для передачи по медной среде последовательного соединения " точка-точка ". Беспроводная точка доступа WAP , в свою очередь , формирует свой кадр для передачи данных по радиоканалу на конечный Узел В.

При создании сетей используются различные логические топологии, которые определяют, как узлы общаются через среду, как обеспечивается управление доступом к среде. Наиболее известные логические топологии: " точка-точка " ( point-to-point ), множественного доступа (multiaccess), широковещательная ( broadcast ) и маркерная ( token passing ).

Совместное использование среды несколькими устройствами реализуется на основе двух основных методов:

  • метод конкурентного (недетерминированого) доступа (Contention-based Access), когда все узлы сети равноправны, очередность передачи данных не организована. Для передачи данный узел должен прослушать среду, если она свободна, то можно передать информацию. При этом могут возникнуть конфликты (коллизии ), когда два (или более) узла одновременно начинают передачу данных;
  • метод контролируемого (детерминированного) доступа (Controlled Access), который обеспечивает узлам очередность доступа к среде для передачи данных.

На ранних этапах создания Ethernet -сетей использовалась топология " шина ", разделяемая среда передачи данных являлась общей для всех пользователей. При этом реализовался метод множественного доступа к общей среде передачи (протокол 802.3). При этом требовался контроль несущей, наличие которой говорило о том, что какой-то узел уже передает данные по общей среде. Поэтому узел, желающий передать данные, должен был дождаться окончания передачи и при освобождении среды попытаться передать данные.

Переданную в сеть информацию может получить любой компьютер , у которого адрес сетевого адаптера NIC совпадает с МАС-адресом назначения передаваемого кадра, или все компьютеры сети при широковещательной передаче. Однако передавать информацию в любой момент времени может только один узел. Прежде чем начать передачу, узел должен убедиться, что общая шина свободна, для чего узел прослушивает среду.

При одновременной передаче данных двумя или более компьютерами возникает конфликт (коллизия ), когда данные передающих узлов накладываются друг на друга, происходит искажение и потеря информации . Поэтому требуется обработка коллизии и повторная передача участвовавших в коллизии кадров.

Подобный метод недетерминированного (ассоциативного) доступа к среде получил название множественного доступа к среде с контролем несущей и обнаружением коллизий ( Carrier Sence Multiply Access

Определенно начинать лучше с теории, и затем, плавно, переходить к практике. Поэтому сначала рассмотрим сетевую модель (теоретическая модель), а затем приоткроем занавес на то, как теоретическая сетевая модель вписывается в сетевую инфраструктуру (на сетевое оборудование, компьютеры пользователей, кабели, радиоволны и т.д.).

Итак, сетевая модель - это модель взаимодействия сетевых протоколов. А протоколы в свою очередь, это стандарты, которые определяют каким образом, будут обмениваться данными различные программы.

Поясню на примере: открывая любую страничку в интернете, сервер (где находится открываемая страничка) пересылает в Ваш браузер данные (гипертекстовый документ) по протоколу HTTP. Благодаря протоколу HTTP Ваш браузер, получая данные с сервера, знает, как их требуется обработать, и успешно обрабатывает их, показывая Вам запрашиваемую страничку.

Если Вы еще не в курсе что из себя представляет страничка в интернете, то объясню в двух словах: любой текст на веб-страничке заключен в специальные теги, которые указывают браузеру какой размер текста использовать, его цвет, расположение на странице (слева, справа или по центру). Это касается не только текста, но и картинок, форм, активных элементов и вообще всего контента, т.е. того, что есть на страничке. Браузер, обнаруживая теги, действует согласно их предписанию, и показывает Вам обработанные данные, которые заключены в эти теги. Вы и сами можете увидеть теги этой странички (и этот текст между тегами), для этого зайдите в меню вашего браузера и выберите - просмотр исходного кода.

Не будем сильно отвлекаться, "Сетевая модель" нужная тема для тех, кто хочет стать специалистом. Эта статья состоит из 3х частей и для Вас, Я постарался написать не скучно, понятливо и коротко. Для получения подробностей, или получения дополнительного разъяснения отпишитесь в комментариях внизу страницы, и я непременно помогу Вам.

Мы, как и в Сетевой Академии Cisco рассмотрим две сетевые модели: модель OSI и модель TCP/IP (иногда её называют DOD), а заодно и сравним их.

OSI расшифровывается как Open System Interconnection. На русском языке это звучит следующим образом: Сетевая модель взаимодействия открытых систем (эталонная модель). Эту модель можно смело назвать стандартом. Именно этой модели придерживаются производители сетевых устройств, когда разрабатывают новые продукты.

Сетевая модель OSI состоит из 7 уровней, причем принято начинать отсчёт с нижнего.

Перечислим их:

  • 7. Прикладной уровень (application layer)
  • 6. Представительский уровень или уровень представления (presentation layer)
  • 5. Сеансовый уровень (session layer)
  • 4. Транспортный уровень (transport layer)
  • 3. Сетевой уровень (network layer)
  • 2. Канальный уровень (data link layer)
  • 1. Физический уровень (physical layer)

Как говорилось выше, сетевая модель – это модель взаимодействия сетевых протоколов (стандартов), вот на каждом уровне и присутствуют свои протоколы. Перечислять их скучный процесс (да и не к чему), поэтому лучше разберем все на примере, ведь усваиваемость материала на примерах гораздо выше;)

Прикладной уровень

Прикладной уровень или уровень приложений(application layer) – это самый верхний уровень модели. Он осуществляет связь пользовательских приложений с сетью. Эти приложения нам всем знакомы: просмотр веб-страниц (HTTP), передача и приём почты (SMTP, POP3), приём и получение файлов (FTP, TFTP), удаленный доступ (Telnet) и т.д.

Представительский уровень

Представительский уровень или уровень представления данных (presentation layer) – он преобразует данные в соответствующий формат. На примере понять проще: те картинки (все изображения) которые вы видите на экране, передаются при пересылке файла в виде маленьких порций единиц и ноликов (битов). Так вот, когда Вы отправляете своему другу фотографию по электронной почте, протокол Прикладного уровня SMTP отправляет фотографию на нижний уровень, т.е. на уровень Представления. Где Ваша фотка преобразуется в удобный вид данных для более низких уровней, например в биты (единицы и нолики).

Именно таким же образом, когда Ваш друг начнет получать Ваше фото, ему оно будет поступать в виде все тех же единиц и нулей, и именно уровень Представления преобразует биты в полноценное фото, например JPEG.

Вот так и работает этот уровень с протоколами (стандартами) изображений (JPEG, GIF, PNG, TIFF), кодировок (ASCII, EBDIC), музыки и видео (MPEG) и т.д.

Сеансовый уровень

Сеансовый уровень или уровень сессий(session layer) – как видно из названия, он организует сеанс связи между компьютерами. Хорошим примером будут служить аудио и видеоконференции, на этом уровне устанавливается, каким кодеком будет кодироваться сигнал, причем этот кодек должен присутствовать на обеих машинах. Еще примером может служить протокол SMPP (Short message peer-to-peer protocol), с помощью него отправляются хорошо известные нам СМСки и USSD запросы. И последний пример: PAP (Password Authentication Protocol) – это старенький протокол для отправки имени пользователя и пароля на сервер без шифрования.

Больше про сеансовый уровень ничего не скажу, иначе углубимся в скучные особенности протоколов. А если они (особенности) Вас интересуют, пишите письма мне или оставляйте сообщение в комментариях с просьбой раскрыть тему более подробно, и новая статья не заставит себя долго ждать;)

Транспортный уровень

Транспортный уровень (transport layer) – этот уровень обеспечивает надёжность передачи данных от отправителя к получателю. На самом деле всё очень просто, например вы общаетесь с помощью веб-камеры со своим другом или преподавателем. Нужна ли здесь надежная доставка каждого бита переданного изображения? Конечно нет, если потеряется несколько битов из потокового видео Вы даже этого не заметите, даже картинка не изменится (м.б. изменится цвет одного пикселя из 900000 пикселей, который промелькнет со скоростью 24 кадра в секунду).

А теперь приведем такой пример: Вам друг пересылает (например, через почту) в архиве важную информацию или программу. Вы скачиваете себе на компьютер этот архив. Вот здесь надёжность нужна 100%, т.к. если пару бит при закачке архива потеряются – Вы не сможете затем его разархивировать, т.е. извлечь необходимые данные. Или представьте себе отправку пароля на сервер, и в пути один бит потерялся – пароль уже потеряет свой вид и значение изменится.

Таким образом, когда мы смотрим видеоролики в интернете, иногда мы видим некоторые артефакты, задержки, шумы и т.п. А когда мы читаем текст с веб-страницы – потеря (или скжение) букв не допустима, и когда скачиваем программы – тоже все проходит без ошибок.

На этом уровне я выделю два протокола: UDP и TCP. UDP протокол (User Datagram Protocol) передает данные без установления соединения, не подтверждает доставку данных и не делает повторы. TCP протокол (Transmission Control Protocol), который перед передачей устанавливает соединение, подтверждает доставку данных, при необходимости делает повтор, гарантирует целостность и правильную последовательность загружаемых данных.

Следовательно, для музыки, видео, видеоконференций и звонков используем UDP (передаем данные без проверки и без задержек), а для текста, программ, паролей, архивов и т.п. – TCP (передача данных с подтверждением о получении, затрачивается больше времени).

Сетевой уровень

Сетевой уровень (network layer) – этот уровень определяет путь, по которому данные будут переданы. И, между прочим, это третий уровень Сетевой модели OSI, а ведь существуют такие устройства, которые как раз и называют устройствами третьего уровня – маршрутизаторы.

Все мы слышали об IP-адресе, вот это и осуществляет протокол IP (Internet Protocol). IP-адрес – это логический адрес в сети.

На этом уровне достаточно много протоколов и все эти протоколы мы разберем более подробно позже, в отдельных статьях и на примерах. Сейчас же только перечислю несколько популярных.

Как об IP-адресе все слышали и о команде ping – это работает протокол ICMP.

Те самые маршрутизаторы (с которыми мы и будет работать в дальнейшем) используют протоколы этого уровня для маршрутизации пакетов (RIP, EIGRP, OSPF).

Канальный уровень

Канальный уровень (data link layer) – он нам нужен для взаимодействия сетей на физическом уровне. Наверное, все слышали о MAC-адресе, вот он является физическим адресом. Устройства канального уровня – коммутаторы, концентраторы и т.п.

IEEE (Institute of Electrical and Electronics Engineers - Институт инженеров по электротехнике и электронике) определяет канальный уровень двумя подуровнями: LLC и MAC.

LLC – управление логическим каналом (Logical Link Control), создан для взаимодействия с верхним уровнем.

MAC – управление доступом к передающей среде (Media Access Control), создан для взаимодействия с нижним уровнем.

Объясню на примере: в Вашем компьютере (ноутбуке, коммуникаторе) имеется сетевая карта (или какой-то другой адаптер), так вот для взаимодействия с ней (с картой) существует драйвер. Драйвер – это некоторая программа - верхний подуровень канального уровня, через которую как раз и можно связаться с нижними уровнями, а точнее с микропроцессором (железо ) – нижний подуровень канального уровня.

Типичных представителей на этом уровне много. PPP (Point-to-Point) – это протокол для связи двух компьютеров напрямую. FDDI (Fiber Distributed Data Interface) – стандарт передаёт данные на расстояние до 200 километров. CDP (Cisco Discovery Protocol) – это проприетарный (собственный) протокол принадлежащий компании Cisco Systems, с помощью него можно обнаружить соседние устройства и получить информацию об этих устройствах.

Физический уровень

Физический уровень (physical layer) – самый нижний уровень, непосредственно осуществляющий передачу потока данных. Протоколы нам всем хорошо известны: Bluetooth, IRDA (Инфракрасная связь), медные провода (витая пара, телефонная линия), Wi-Fi, и т.д.

Заключение

Вот мы и разобрали сетевую модель OSI. В следующей части приступим к Сетевой модели TCP/IP, она меньше и протоколы те же. Для успешной сдачи тестов CCNA надо провести сравнение и выявить отличия, что и будет сделано.

Из того, что протокол представляет собой соглашение, принятое двумя взаимодействующими объектами, в данном случае двумя работающими в сети компьютерами, совсем не следует, что он обязательно является стандартным. Но на практике при реализации сетей обычно используются стандартные протоколы . Это могут быть фирменные, национальные или международные стандарты .

В начале 80-х годов ряд международных организаций по стандартизации - ISO, ITU -T и некоторые другие - разработали модель, которая сыграла значительную роль в развитии сетей. Эта модель называется моделью ISO/ OSI .

Модель взаимодействия открытых систем (Open System Interconnection, OSI ) определяет различные уровни взаимодействия систем в сетях с коммутацией пакетов , дает им стандартные имена и указывает, какие функции должен выполнять каждый уровень.

Модель OSI была разработана на основании большого опыта, полученного при создании компьютерных сетей, в основном глобальных, в 70-е годы. Полное описание этой модели занимает более 1000 страниц текста.

В модели OSI (рис. 11.6) средства взаимодействия делятся на семь уровней: прикладной, представительный , сеансовый , транспортный, сетевой , канальный и физический. Каждый уровень имеет дело с определенным аспектом взаимодействия сетевых устройств.


Рис. 11.6.

Модель OSI описывает только системные средства взаимодействия, реализуемые операционной системой, системными утилитами и аппаратными средствами. Модель не включает средства взаимодействия приложений конечных пользователей. Собственные протоколы взаимодействия приложения реализуют, обращаясь к системным средствам. Поэтому необходимо различать уровень взаимодействия приложений и прикладной уровень .

Следует также иметь в виду, что приложение может взять на себя функции некоторых верхних уровней модели OSI . Например, некоторые СУБД имеют встроенные средства удаленного доступа к файлам. В этом случае приложение, выполняя доступ к удаленным ресурсам, не использует системную файловую службу; оно обходит верхние уровни модели OSI и обращается напрямую к системным средствам, ответственным за транспортировку сообщений по сети, которые располагаются на нижних уровнях модели OSI .

Итак, пусть приложение обращается с запросом к прикладному уровню, например к файловой службе . На основании этого запроса программное обеспечение прикладного уровня формирует сообщение стандартного формата. Обычное сообщение состоит из заголовка и поля данных. Заголовок содержит служебную информацию, которую необходимо передать через сеть прикладному уровню машины-адресата, чтобы сообщить ему, какую работу надо выполнить. В нашем случае заголовок, очевидно, должен содержать информацию о местонахождении файла и о типе операции, которую необходимо выполнить. Поле данных сообщения может быть пустым или содержать какие-либо данные, например те, которые необходимо записать в удаленный файл . Но для того чтобы доставить эту информацию по назначению, предстоит решить еще много задач, ответственность за которые несут нижележащие уровни.

После формирования сообщения прикладной уровень направляет его вниз по стеку представительному уровню . Протокол представительного уровня на основании информации, полученной из заголовка прикладного уровня, выполняет требуемые действия и добавляет к сообщению собственную служебную информацию - заголовок представительного уровня , в котором содержатся указания для протокола представительного уровня машины-адресата. Полученное в результате сообщение передается вниз сеансовому уровню , который в свою очередь добавляет свой заголовок, и т. д. (Некоторые протоколы помещают служебную информацию не только в начале сообщения в виде заголовка, но и в конце, в виде так называемого "концевика".) Наконец, сообщение достигает нижнего, физического уровня , который, собственно, и передает его по линиям связи машине-адресату. К этому моменту сообщение "обрастает" заголовками всех уровней (

Только начали работать сетевым администратором? Не хотите оказаться сбитым с толку? Наша статья вам пригодится. Слышали, как проверенный временем администратор говорит о сетевых неполадках и упоминает какие-то уровни? Может вас когда-нибудь спрашивали на работе, какие уровни защищены и работают, если вы используете старый брандмауэр? Чтобы разобраться с основами информационной безопасности, нужно понять принцип иерархии модели OSI. Попробуем увидеть возможности данной модели.

Уважающий себя системный администратор должен хорошо разбираться в сетевых терминах

В переводе с английского - базовая эталонная модель взаимодействия открытых систем. Точнее, сетевая модель стека сетевых протоколов OSI/ISO. Введена в 1984 году в качестве концептуальной основы, разделившей процесс отправки данных во всемирной паутине на семь несложных этапов. Она не является самой популярной, так как затянулась разработка спецификации OSI. Стек протоколов TCP/IP выгоднее и считается основной используемой моделью. Впрочем, у вас есть огромный шанс столкнуться с моделью OSI на должности системного администратора или в IT-сфере.

Создано множество спецификаций и технологий для сетевых устройств. В таком разнообразии легко запутаться. Именно модель взаимодействия открытых систем помогает понимать друг друга сетевым устройствам, использующим различные методы общения. Заметим, что наиболее полезна OSI для производителей программного и аппаратного обеспечения, занимающихся проектированием совместимой продукции.

Спросите, какая же в этом польза для вас? Знание многоуровневой модели даст вам возможность свободного общения с сотрудниками IT-компаний, обсуждение сетевых неполадок уже не будет гнетущей скукой. А когда вы научитесь понимать, на каком этапе произошёл сбой, сможете легко находить причины и значительно сокращать диапазон своей работы.

Уровни OSI

Модель содержит в себе семь упрощённых этапов:

  • Физический.
  • Канальный.
  • Сетевой.
  • Транспортный.
  • Сеансовый.
  • Представительский.
  • Прикладной.

Почему разложение на шаги упрощает жизнь? Каждый из уровней соответствует определённому этапу отправки сетевого сообщения . Все шаги последовательны, значит, функции выполняются независимо, нет необходимости в информации о работе на предыдущем уровне. Единственная необходимая составляющая - способ получения данных с предшествующего шага, и каким образом пересылается информация на последующий шаг.

Перейдём к непосредственному знакомству с уровнями.

Физический уровень

Главная задача первого этапа - пересылка битов через физические каналы связи. Физические каналы связи - устройства, созданные для передачи и приёма информационных сигналов. К примеру, оптоволокно, коаксиальный кабель или витая пара. Пересылка может проходить и через беспроводную связь. Первый этап характеризуется средой передачи данных: защитой от помех, полосой пропускания, волновым сопротивлением. Так же задаются качества электрических конечных сигналов (вид кодирования, уровни напряжения и скорость передачи сигнала) и подводятся к стандартным типам разъёмов, назначаются контактные соединения.

Функции физического этапа осуществляются абсолютно на каждом устройстве, подключённом к сети. Например, сетевой адаптер реализовывает эти функции со стороны компьютера. Вы могли уже столкнуться с протоколами первого шага: RS -232, DSL и 10Base-T, определяющими физические характеристики канала связи.

Канальный уровень

На втором этапе связываются абстрактный адрес устройства с физическим устройством, проверяется доступность среды передачи. Биты сформировываются в наборы - кадры. Основная задача канального уровня - выявление и правка ошибок. Для корректной пересылки перед и после кадра вставляются специализированные последовательности битов и добавляется высчитанная контрольная сумма . Когда кадр достигает адресата, вновь высчитывается контрольная сумма, уже прибывших данных, если она совпадает с контрольной суммой в кадре, кадр признаётся правильным. В ином случае появляется ошибка, исправляемая через повторную передачу информации.

Канальный этап делает возможным передачу информации, благодаря специальной структуре связей. В частности, через протоколы канального уровня работают шины, мосты, коммутаторы. В спецификации второго шага входят: Ethernet, Token Ring и PPP. Функции канального этапа в компьютере исполняют сетевые адаптеры и драйверы к ним.

Сетевой уровень

В стандартных ситуациях функций канального этапа не хватает для высококачественной передачи информации. Спецификации второго шага могут передавать данные лишь между узлами с одинаковой топологией, к примеру, дерева. Появляется необходимость в третьем этапе. Нужно образовать объединённую транспортную систему с разветвлённой структурой для нескольких сетей, обладающих произвольной структурой и различающихся методом пересылки данных.

Если объяснить по-другому, то третий шаг обрабатывает интернет-протокол и исполняет функцию маршрутизатора: поиск наилучшего пути для информации. Маршрутизатор - устройство, собирающее данные о структуре межсетевых соединений и передающее пакеты в сеть назначения (транзитные передачи - хопы). Если вы сталкиваетесь с ошибкой в IP-адресе, то это проблема, возникшая на сетевом уровне. Протоколы третьего этапа разбиваются на сетевые, маршрутизации или разрешения адресов: ICMP, IPSec, ARP и BGP.

Транспортный уровень

Чтобы данные дошли до приложений и верхних уровней стека, необходим четвёртый этап. Он предоставляет нужную степень надёжности передачи информации. Значатся пять классов услуг транспортного этапа. Их отличие заключается в срочности, осуществимости восстановления прерванной связи, способности обнаружить и исправить ошибки передачи. К примеру, потеря или дублирование пакетов.

Как выбрать класс услуг транспортного этапа? Когда качество каналов транспортировки связи высокое, адекватным выбором окажется облегчённый сервис. Если каналы связи в самом начале работают небезопасно, целесообразно прибегнуть к развитому сервису, который обеспечит максимальные возможности для поиска и решения проблем (контроль поставки данных, тайм-ауты доставки). Спецификации четвёртого этапа: TCP и UDP стека TCP/IP, SPX стека Novell.

Объединение первых четырёх уровней называется транспортной подсистемой. Она сполна предоставляет выбранный уровень качества.

Сеансовый уровень

Пятый этап помогает в регулировании диалогов. Нельзя, чтобы собеседники прерывали друг друга или говорили синхронно. Сеансовый уровень запоминает активную сторону в конкретный момент и синхронизирует информацию, согласуя и поддерживая соединения между устройствами. Его функции позволяют возвратиться к контрольной точке во время длинной пересылки и не начинать всё заново. Также на пятом этапе можно прекратить соединение, когда завершается обмен информацией. Спецификации сеансового уровня: NetBIOS.

Представительский уровень

Шестой этап участвует в трансформации данных в универсальный распознаваемый формат без изменения содержания. Так как в разных устройствах утилизируются различные форматы, информация, обработанная на представительском уровне, даёт возможность системам понимать друг друга, преодолевая синтаксические и кодовые различия. Кроме того, на шестом этапе появляется возможность шифровки и дешифровки данных, что обеспечивает секретность. Примеры протоколов: ASCII и MIDI, SSL.

Прикладной уровень

Седьмой этап в нашем списке и первый, если программа отправляет данные через сеть. Состоит из наборов спецификаций, через которые юзер , Web-страницам. Например, при отправке сообщений по почте именно на прикладном уровне выбирается удобный протокол. Состав спецификаций седьмого этапа очень разнообразен. К примеру, SMTP и HTTP, FTP, TFTP или SMB.

Вы можете услышать где-нибудь о восьмом уровне модели ISO. Официально, его не существует, но среди работников IT-сферы появился шуточный восьмой этап. Всё из-за того, что проблемы могут возникнуть по вине пользователя, а как известно, человек находится у вершины эволюции, вот и появился восьмой уровень.

Рассмотрев модель OSI, вы смогли разобраться со сложной структурой работы сети и теперь понимаете суть вашей работы. Всё становится довольно просто, когда процесс разбивается на части!




Разработана эта модель была в далеком 1984 году Международной организацией по стандартизации (International Standard Organization, ISO), и в оригинале называется Open Systems Interconnection, OSI.
Модель взаимодействия открытых систем (по факту - модель сетевого взаимодействия) является стандартом для проектирования сетевых коммуникаций и предполагает уровневый подход к построению сетей.
Каждый уровень модели обслуживает различные этапы процесса взаимодействия. Посредством деления на уровни сетевая модель OSI упрощает совместную работу оборудования и программного обеспечения. Модель OSI разделяет сетевые функции на семь уровней: прикладной, уровень представления, сессионный, транспортный, сетевой, канальный и физический.


  • Физический уровень (Physical layer) - определяет способ физического соединения компьютеров в сети. Функциями средств, относящихся к данному уровню, являются побитовое преобразование цифровых данных в сигналы, передаваемые по физической среде (например, по кабелю), а также собственно передача сигналов.
  • Канальный уровень (Data Link layer) - отвечает за организацию передачи данных между абонентами через физический уровень, поэтому на данном уровне предусмотрены средства адресации, позволяющие однозначно идентифицировать отправителя и получателя во всем множестве абонентов, подключенных к обще линии связи. В функции данного уровня также входит упорядочивание передачи с целью параллельного использования одной линии связи несколькими парами абонентов. Кроме того, средства канального уровня обеспечивают проверку ошибок, которые могут возникать при передаче данных физическим уровнем.
  • Сетевой уровень (Network layer) - обеспечивает доставку данных между компьютерами сети, представляющей собой объединение различных физических сетей. Данный уровень предполагает наличие средств логической адресации, позволяющих однозначно идентифицировать компьютер в объединенной сети. Одной из главных функций, выполняемых средствами данного уровня, является целенаправленная передача данных конкретному получателю.
  • Транспортный уровень (Transport layer) - реализует передачу данных между двумя программами, функционирующими на разных компьютерах, обеспечивая при этом отсутствие потерь и дублирования информации, которые могут возникать в результате ошибок передачи нижних уровней. В случае, если данные, передаваемые через транспортный уровень, подвергаются фрагментации, то средства данного уровня гарантируют сборку фрагментов в правильном порядке.
  • Сессионный (или сеансовый) уровень (Session layer) - позволяет двум программам поддерживать продолжительное взаимодействие по сети, называемое сессией (session) или сеансом. Этот уровень управляет установлением сеанса, обменом информацией и завершением сеанса. Он также отвечает за идентификацию, позволяя тем самым только определенным абонентам принимать участие в сеансе, и обеспечивает работу служб безопасности с целью упорядочивания доступа к информации сессии.
  • Уровень представления (Presentation layer) - осуществляет промежуточное преобразование данных исходящего сообщения в общий формат, который предусмотрен средствами нижних уровней, а также обратное преобразование входящих данных из общего формата в формат, понятный получающей программе.
  • Прикладной уровень (Application layer) - предоставляет высокоуровневые функции сетевого взаимодействия, такие, как передача файлов, отправка сообщений по электронной почте и т.п.

Модель OSI простым языком


Модель OSI – это аббревиатура от английского Open System Interconnection, то есть модель взаимодействия открытых систем. Под открытыми системами можно понимать сетевое оборудование (компьютеры с сетевыми картами, коммутаторы, маршрутизаторы).
Сетевая модель OSI представляет собой схему работы (или план действий по обмену данными) для сетевых устройств. Также OSI играет роль в создании новых сетевых протоколов, так как служит эталоном взаимодействия.
OSI состоит из 7 блоков (уровней). Каждый блок выполняет свою уникальную роль в сетевом взаимодействии различных сетевых устройств.
7 уровней модели OSI: 1 - Физический, 2 - Канальный, 3 - Сетевой, 4 - Транспортный, 5 - Сеансовый, 6 - Представления, 7 - Приложений.
На каждом уровне модели есть собственный набор сетевых протоколов (стандартов передачи данных), с помощью которых устройства в сети обмениваются данными.
Запомните, чем сложнее сетевое устройство, тем больше возможностей оно предоставляет, но и больше уровней занимает, и как следствие – медленней работает.

Сетевые модели. Часть 1. OSI.


Определенно начинать лучше с теории, и затем, плавно, переходить к практике. Поэтому сначала рассмотрим сетевую модель (теоретическая модель), а затем приоткроем занавес на то, как теоретическая сетевая модель вписывается в сетевую инфраструктуру (на сетевое оборудование, компьютеры пользователей, кабели, радиоволны и т.д.).
Итак, сетевая модель - это модель взаимодействия сетевых протоколов. А протоколы в свою очередь, это стандарты, которые определяют каким образом, будут обмениваться данными различные программы.
Поясню на примере: открывая любую страничку в интернете, сервер (где находится открываемая страничка) пересылает в Ваш браузер данные (гипертекстовый документ) по протоколу HTTP. Благодаря протоколу HTTP Ваш браузер, получая данные с сервера, знает, как их требуется обработать, и успешно обрабатывает их, показывая Вам запрашиваемую страничку.
Если Вы еще не в курсе что из себя представляет страничка в интернете, то объясню в двух словах: любой текст на веб-страничке заключен в специальные теги, которые указывают браузеру какой размер текста использовать, его цвет, расположение на странице (слева, справа или по центру). Это касается не только текста, но и картинок, форм, активных элементов и вообще всего контента, т.е. того, что есть на страничке. Браузер, обнаруживая теги, действует согласно их предписанию, и показывает Вам обработанные данные, которые заключены в эти теги. Вы и сами можете увидеть теги этой странички (и этот текст между тегами), для этого зайдите в меню вашего браузера и выберите - просмотр исходного кода.
Не будем сильно отвлекаться, "Сетевая модель" нужная тема для тех, кто хочет стать специалистом. Эта статья состоит из 3х частей и для Вас, Я постарался написать не скучно, понятливо и коротко. Для получения подробностей, или получения дополнительного разъяснения отпишитесь в комментариях внизу страницы, и я непременно помогу Вам.
Мы, как и в Сетевой Академии Cisco рассмотрим две сетевые модели: модель OSI и модель TCP/IP (иногда её называют DOD), а заодно и сравним их.

Эталонная сетевая модель OSI


OSI расшифровывается как Open System Interconnection. На русском языке это звучит следующим образом: Сетевая модель взаимодействия открытых систем (эталонная модель). Эту модель можно смело назвать стандартом. Именно этой модели придерживаются производители сетевых устройств, когда разрабатывают новые продукты.
Сетевая модель OSI состоит из 7 уровней, причем принято начинать отсчёт с нижнего.
Перечислим их:
7. Прикладной уровень (application layer)
6. Представительский уровень или уровень представления (presentation layer)
5. Сеансовый уровень (session layer)
4. Транспортный уровень (transport layer)
3. Сетевой уровень (network layer)
2. Канальный уровень (data link layer)
1. Физический уровень (physical layer)

Как говорилось выше, сетевая модель – это модель взаимодействия сетевых протоколов (стандартов), вот на каждом уровне и присутствуют свои протоколы. Перечислять их скучный процесс (да и не к чему), поэтому лучше разберем все на примере, ведь усваиваемость материала на примерах гораздо выше;)

Прикладной уровень


Прикладной уровень или уровень приложений(application layer) – это самый верхний уровень модели. Он осуществляет связь пользовательских приложений с сетью. Эти приложения нам всем знакомы: просмотр веб-страниц (HTTP), передача и приём почты (SMTP, POP3), приём и получение файлов (FTP, TFTP), удаленный доступ (Telnet) и т.д.

Представительский уровень


Представительский уровень или уровень представления данных (presentation layer) – он преобразует данные в соответствующий формат. На примере понять проще: те картинки (все изображения) которые вы видите на экране, передаются при пересылке файла в виде маленьких порций единиц и ноликов (битов). Так вот, когда Вы отправляете своему другу фотографию по электронной почте, протокол Прикладного уровня SMTP отправляет фотографию на нижний уровень, т.е. на уровень Представления. Где Ваша фотка преобразуется в удобный вид данных для более низких уровней, например в биты (единицы и нолики).
Именно таким же образом, когда Ваш друг начнет получать Ваше фото, ему оно будет поступать в виде все тех же единиц и нулей, и именно уровень Представления преобразует биты в полноценное фото, например JPEG.
Вот так и работает этот уровень с протоколами (стандартами) изображений (JPEG, GIF, PNG, TIFF), кодировок (ASCII, EBDIC), музыки и видео (MPEG) и т.д.

Сеансовый уровень


Сеансовый уровень или уровень сессий(session layer) – как видно из названия, он организует сеанс связи между компьютерами. Хорошим примером будут служить аудио и видеоконференции, на этом уровне устанавливается, каким кодеком будет кодироваться сигнал, причем этот кодек должен присутствовать на обеих машинах. Еще примером может служить протокол SMPP (Short message peer-to-peer protocol), с помощью него отправляются хорошо известные нам СМСки и USSD запросы. И последний пример: PAP (Password Authentication Protocol) – это старенький протокол для отправки имени пользователя и пароля на сервер без шифрования.
Больше про сеансовый уровень ничего не скажу, иначе углубимся в скучные особенности протоколов. А если они (особенности) Вас интересуют, пишите письма мне или оставляйте сообщение в комментариях с просьбой раскрыть тему более подробно, и новая статья не заставит себя долго ждать;)

Транспортный уровень


Транспортный уровень (transport layer) – этот уровень обеспечивает надёжность передачи данных от отправителя к получателю. На самом деле всё очень просто, например вы общаетесь с помощью веб-камеры со своим другом или преподавателем. Нужна ли здесь надежная доставка каждого бита переданного изображения? Конечно нет, если потеряется несколько битов из потокового видео Вы даже этого не заметите, даже картинка не изменится (м.б. изменится цвет одного пикселя из 900000 пикселей, который промелькнет со скоростью 24 кадра в секунду).
А теперь приведем такой пример: Вам друг пересылает (например, через почту) в архиве важную информацию или программу. Вы скачиваете себе на компьютер этот архив. Вот здесь надёжность нужна 100%, т.к. если пару бит при закачке архива потеряются – Вы не сможете затем его разархивировать, т.е. извлечь необходимые данные. Или представьте себе отправку пароля на сервер, и в пути один бит потерялся – пароль уже потеряет свой вид и значение изменится.
Таким образом, когда мы смотрим видеоролики в интернете, иногда мы видим некоторые артефакты, задержки, шумы и т.п. А когда мы читаем текст с веб-страницы – потеря (или скжение) букв не допустима, и когда скачиваем программы – тоже все проходит без ошибок.
На этом уровне я выделю два протокола: UDP и TCP. UDP протокол (User Datagram Protocol) передает данные без установления соединения, не подтверждает доставку данных и не делает повторы. TCP протокол (Transmission Control Protocol), который перед передачей устанавливает соединение, подтверждает доставку данных, при необходимости делает повтор, гарантирует целостность и правильную последовательность загружаемых данных.
Следовательно, для музыки, видео, видеоконференций и звонков используем UDP (передаем данные без проверки и без задержек), а для текста, программ, паролей, архивов и т.п. – TCP (передача данных с подтверждением о получении, затрачивается больше времени).

Сетевой уровень


Сетевой уровень (network layer) – этот уровень определяет путь, по которому данные будут переданы. И, между прочим, это третий уровень Сетевой модели OSI, а ведь существуют такие устройства, которые как раз и называют устройствами третьего уровня – маршрутизаторы.
Все мы слышали об IP-адресе, вот это и осуществляет протокол IP (Internet Protocol). IP-адрес – это логический адрес в сети.
На этом уровне достаточно много протоколов и все эти протоколы мы разберем более подробно позже, в отдельных статьях и на примерах. Сейчас же только перечислю несколько популярных.
Как об IP-адресе все слышали и о команде ping – это работает протокол ICMP.
Те самые маршрутизаторы (с которыми мы и будет работать в дальнейшем) используют протоколы этого уровня для маршрутизации пакетов (RIP, EIGRP, OSPF).
Вся вторая часть курса CCNA (Exploration 2) о маршрутизации.

Канальный уровень


Канальный уровень (data link layer) – он нам нужен для взаимодействия сетей на физическом уровне. Наверное, все слышали о MAC-адресе, вот он является физическим адресом. Устройства канального уровня – коммутаторы, концентраторы и т.п.
IEEE (Institute of Electrical and Electronics Engineers - Институт инженеров по электротехнике и электронике) определяет канальный уровень двумя подуровнями: LLC и MAC.
LLC – управление логическим каналом (Logical Link Control), создан для взаимодействия с верхним уровнем.
MAC – управление доступом к передающей среде (Media Access Control), создан для взаимодействия с нижним уровнем.
Объясню на примере: в Вашем компьютере (ноутбуке, коммуникаторе) имеется сетевая карта (или какой-то другой адаптер), так вот для взаимодействия с ней (с картой) существует драйвер. Драйвер – это некоторая программа - верхний подуровень канального уровня, через которую как раз и можно связаться с нижними уровнями, а точнее с микропроцессором (железо) – нижний подуровень канального уровня.
Типичных представителей на этом уровне много. PPP (Point-to-Point) – это протокол для связи двух компьютеров напрямую. FDDI (Fiber Distributed Data Interface) – стандарт передаёт данные на расстояние до 200 километров. CDP (Cisco Discovery Protocol) – это проприетарный (собственный) протокол принадлежащий компании Cisco Systems, с помощью него можно обнаружить соседние устройства и получить информацию об этих устройствах.
Вся третья часть курса CCNA (Exploration 3) об устройствах второго уровня.

Физический уровень


Физический уровень (physical layer) – самый нижний уровень, непосредственно осуществляющий передачу потока данных. Протоколы нам всем хорошо известны: Bluetooth, IRDA (Инфракрасная связь), медные провода (витая пара, телефонная линия), Wi-Fi, и т.д.
Подробности и спецификации ждите в следующих статьях и в курсе CCNA. Вся первая часть курса CCNA (Exploration 1) посвящена модели OSI.

Заключение


Вот мы и разобрали сетевую модель OSI. В следующей части приступим к Сетевой модели TCP/IP, она меньше и протоколы те же. Для успешной сдачи тестов CCNA надо провести сравнение и выявить отличия, что и будет сделано.

После недолгих размышлений решил поместить сюда статью с сайта Сетевых заморочек . Чтобы всё лежало в одном месте.

И снова здравствуйте дорогие друзья, сегодня мы с вами разберемся в том, что же такое сетевая модель OSI, зачем она, собственно говоря, предназначена.

Как вы уже наверное понимаете, современные сети устроены очень и очень сложно, в них протекает множество различных процессов, выполняются сотни действий. Для того чтобы упростить процесс описания данного многообразия функций сети (а что еще более важно упростить процесс дальнейшей разработки данных функций) были предприняты попытке их структурирования. В результате структурирования все функции, выполняемые компьютерной сетью, разделяются на несколько уровней, каждый из которых отвечает только за определенный, узкоспециализированый круг задач. Здесь сетевую модель можно сравнить со структурой компании. Компания разделена на отделы. Каждый отдел выполняет свои функции, но во время работы контактирует с другими отделами.


Разделение функций с помощью сетевой модели


Сетевая модель OSI разработана таким образом, чтобы вышестоящие уровни сетевой модели использовали нижестоящие уровни сетевой модели, для передачи своей информации. Правила, с помощью которых общаются уровни модели, называются сетевыми протоколами. Сетевой протокол определенного уровня модели может общаться либо с протоколами своего уровня, либо с протоколами соседних уровней. Здесь опять же можно провести аналогию с работой компании. В компании всегда есть четко установленная иерархия, хотя и не такая строгая как в сетевой модели. Работники одной ступени иерархии выполняют поручения, полученные от работников более высокого уровня иерархии.


Взаимодействие между уровнями сетевой модели OSI


Каждое устройство, работающее в сети, можно представить в виде системы работающей на соответствующих уровнях модели OSI. Причем данное устройство может использовать в своей работе, как все уровни модели OSI, так и только некоторые нижние ее уровни. Обычно когда говорят, что устройство работает на некотором уровне модели, то подразумевают, что оно работает на данном уровне сетевой модели и на всех лежащих ниже уровнях.


Работа не некоторых уровнях сетевой модели OSI


Когда два различных устройства сети общаются между собой, они используют протоколы одних и тех же уровней сетевой модели, при этом в процесс взаимодействия вовлекается как протоколы уровня на котором непосредственно происходит взаимодействие, так и необходимые протоколы всех нижележащих уровней, так как они используются для передачи данных, полученных от верхних уровней.


Общение двух систем с позиции модели OSI


При передачи информации от верхнего уровня сетевой модели к нижнему уровню сетевой модели, к данной полезной информации добавляется некоторая служебная информация, называемая заголовком (на 2 уровне добавляется не только заголовок, но еще и концевик). Данный процесс добавления служебной информации называется инкапсуляцией. При приеме (передачи информации от нижнего уровня к верхнему) происходит отделение данной служебной информации и получение исходных данных. Такой процесс называется деинкапсуляцией. По своей сути этот процесс очень похож на процесс отправки письма по почте. Представьте, что вы хотите отправить письмо своему другу. Вы пишите письмо – это полезная информация. Отправляя ее по почте, вы упаковываете ее в конверт, надписывая на нем адрес получателя, то есть добавляете к полезной информации некоторый заголовок. По сути это и есть инкапсуляция. Получая ваше письмо, ваш друг его деинкапсулирует – то есть разрывает конверт и достает из него полезную информацию – ваше письмо.


Демонстрация принципа инкапсуляции


Модель OSI подразделяет все функции, выполняемые при взаимодействии систем на 7 уровней: Физический(Physical) - 1, Канальный(Data link) -2, Сетевой(network) – 3, Транспортный(transport) – 4, Сеансовый(Session) -5, Представительский(Presentation) -6 и Прикладной (Application) - 7.


Уровни модели взаимодействия открытых систем


Кратенько рассмотрим назначение каждого из уровней модели взаимодействия открытых систем.

Прикладной уровень является точкой, через которую приложения общаются с сетью (точка входа в модель OSI). С помощью данного уровня модели OSI выполняется следующие задачи: управление сетью, управление занятостью системы, управление передачей файлов, идентификация пользователей по их паролям. Примерами протоколов данного уровня являются: HTTP, SMTP, RDP и д.р. Очень часто протоколы прикладного уровня выполняют одновременно функции протоколов представительского и сеансового уровней.


Данный уровень отвечает за формат представления данных. Грубо говоря, он преобразует данные полученные от уровня приложений к формату пригодному для передачи по сети (ну и соответственно выполняет обратную операцию преобразуя информацию, полученную из сети, к формату пригодному для обработки приложениями).


На данном уровне происходит установление, поддержание и управление сеансом связи между двумя системами. Именно данный уровень отвечает за поддержание связи между системами на весь промежуток времени в течение которого происходит их взаимодействие.


Протоколы данного уровня сетевой модели OSI отвечают за передачу данных от одной системы другой. На данном уровне большие блоки данных разделяются на более мелкие блоки, пригодные для обработки сетевым уровнем (очень мелкие блоки данных объединяются в более крупные), данные блоки соответствующим образом маркируются для их последующего восстановления на принимающей стороне. Так же при использовании соответствующих протоколов данный уровень способен обеспечить контроль доставки пакетов сетевого уровня. Блок данных, которым оперируют данный уровень обычно называется сегментом. Примерами протоколов данного уровня являются: TCP, UDP, SPX, ATP и д.р.


Данный уровень отвечает за маршрутизацию (определение оптимальных маршрутов от одной системы до другой) блоков данных данного уровня. Блок данных этого уровня обычно называется пакетом. Так же данный уровень отвечает за логическую адресацию систем (те самые IP адреса), на основе которой как раз и происходит маршрутизация. К протоколам данного уровня можно отнести: IP, IPX и др, к устройствам работающим на данном уровне – маршрутизаторы.


Данный уровень отвечает за физическую адресацию устройств сети (MAC адреса), управлением доступа к среде, а также коррекцией ошибок допущенных физическим уровнем. Блок данных, используемый на канальном уровне принято называть фреймом. К данному уровню относятся следующие устройства: коммутаторы (не все), мосты и д.р. Типичной технологией использующей данный уровень является Ethernet.


Осуществляет передачу оптических или электрических импульсов по выбранной среде передачи. К устройствам данного уровня можно отнести всевозможные повторители и концентраторы.


Модель OSI сама по себе не является практической реализацией, она лишь предполагает некоторый набор правил по взаимодействию компонентов системы. Практическим примером реализации стека сетевых протоколов является стек протоколов TCP/IP (а так же другие менее распространенные стеки протоколов).
Похожие публикации