Проектирование баз данных. Этапы проектирования базы данных

Основные понятия Баз данных

Развития вычислительной техники осуществлялось по двум основным направлениям:

применение вычислительной техники для выполнения численных расчетов;

использование средств вычислительной техники в информационных системах.

Информационная система – это совокупность программно-аппаратных средств, способов и людей, которые обеспечивают сбор, хранение, обработку и выдачу информации для решения поставленных задач. На ранних стадиях использования информационных систем применялась файловая модель обработки. В дальнейшем в информационных системах стали применяться базы данных. Базы данных являются современной формой организации, хранения и доступа к информации. Примерами крупных информационных систем являются банковские системы, системы заказов железнодорожных билетов и т.д.

База данных – это интегрированная совокупность структурированных и взаимосвязанных данных, организованная по определенным правилам, которые предусматривают общие принципы описания, хранения и обработки данных. Обычно база данных создается для предметной области.

Предметная область – это часть реального мира, подлежащая изучению с целью создания базы данных для автоматизации процесса управления.

Наборы принципов, которые определяют организацию логической структуры хранения данных в базе, называются моделями данных.

Существуют 4 основные модели данных – списки (плоские таблицы), реляционные базы данных, иерархические и сетевые структуры.

В течение многих лет преимущественно использовались плоские таблицы (плоские БД) типа списков в Excel. В настоящее время наибольшее распространение при разработке БД получили реляционные модели данных. Реляционная модель данных является совокупностью простейших двумерных таблиц – отношений (англ. relation), т.е. простейшая двумерная таблица определяется как отношение (множество однотипных записей объединенных одной темой).

От термина relation (отношение) происходит название реляционная модель данных. В реляционных БД используется несколько двумерных таблиц, в которых строки называются записями, а столбцы полями, между записями которых устанавливаются связи. Этот способ организации данных позволяет данные (записи) в одной таблице связывать с данными (записями) в других таблицах через уникальные идентификаторы (ключи) или ключевые поля.



Основные понятия реляционных БД: нормализация, связи и ключи

1. Принципы нормализации:

В каждой таблице БД не должно быть повторяющихся полей;

В каждой таблице должен быть уникальный идентификатор (первичный ключ);

Каждому значению первичного ключа должна соответствовать достаточная информация о типе сущности или об объекте таблицы (например, информация об успеваемости, о группе или студентах);

Изменение значений в полях таблицы не должно влиять на информацию в других полях (кроме изменений в полях ключа).

2. Виды логической связи.

Связь устанавливается между двумя общими полями (столбцами) двух таблиц. Существуют связи с отношением «один-к-одному», «один-ко-многим» и «многие-ко-многим».

Отношения, которые могут существовать между записями двух таблиц:

один – к - одному, каждой записи из одной таблицы соответствует одна запись в другой таблице;

один – ко - многим, каждой записи из одной таблицы соответствует несколько записей другой таблице;

многие – к - одному, множеству записей из одной таблице соответствует одна запись в другой таблице;

многие – ко - многим, множеству записей из одной таблицы соответствует несколько записей в другой таблице.

Тип отношения в создаваемой связи зависит от способа определения связываемых полей:

Отношение «один-ко-многим» создается в том случае, когда только одно из полей является полем первичного ключа или уникального индекса.

Отношение «один-к-одному» создается в том случае, когда оба связываемых поля являются ключевыми или имеют уникальные индексы.

Отношение «многие-ко-многим» фактически является двумя отношениями «один-ко-многим» с третьей таблицей, первичный ключ которой состоит из полей внешнего ключа двух других таблиц

3. Ключи. Ключ – это столбец (может быть несколько столбцов), добавляемый к таблице и позволяющий установить связь с записями в другой таблице. Существуют ключи двух типов: первичные и вторичные или внешние.

Первичный ключ – это одно или несколько полей (столбцов), комбинация значений которых однозначно определяет каждую запись в таблице. Первичный ключ не допускает значений Null и всегда должен иметь уникальный индекс. Первичный ключ используется для связывания таблицы с внешними ключами в других таблицах.

Внешний (вторичный) ключ - это одно или несколько полей (столбцов) в таблице, содержащих ссылку на поле или поля первичного ключа в другой таблице. Внешний ключ определяет способ объединения таблиц.

Из двух логически связанных таблиц одну называют таблицей первичного ключа или главной таблицей, а другую таблицей вторичного (внешнего) ключа или подчиненной таблицей. СУБД позволяют сопоставить родственные записи из обеих таблиц и совместно вывести их в форме, отчете или запросе.

Существует три типа первичных ключей: ключевые поля счетчика (счетчик), простой ключ и составной ключ.

Поле счетчика (Тип данных «Счетчик»). Тип данных поля в базе данных, в котором для каждой добавляемой в таблицу записи в поле автоматически заносится уникальное числовое значение.

Простой ключ. Если поле содержит уникальные значения, такие как коды или инвентарные номера, то это поле можно определить как первичный ключ. В качестве ключа можно определить любое поле, содержащее данные, если это поле не содержит повторяющиеся значения или значения Null.

Составной ключ. В случаях, когда невозможно гарантировать уникальность значений каждого поля, существует возможность создать ключ, состоящий из нескольких полей. Чаще всего такая ситуация возникает для таблицы, используемой для связывания двух таблиц многие - ко - многим.

Необходимо еще раз отметить, что в поле первичного ключа должны быть только уникальные значения в каждой строке таблицы, т.е. совпадение не допускается, а в поле вторичного или внешнего ключа совпадение значений в строках таблицы допускается.

Если возникают затруднения с выбором подходящего типа первичного ключа, то в качеcтве ключа целесообразно выбрать поле счетчика.

Программы, которые предназначены для структурирования информации, размещения ее в таблицах и манипулирования данными называются системами управления базами данных (СУБД). Другими словами СУБД предназначены как для создания и ведения базы данных, так и для доступа к данным. В настоящее время насчитывается более 50 типов СУБД для персональных компьютеров. К наиболее распространенным типам СУБД относятся: MS SQL Server, Oracle, Informix, Sybase, DB2, MS Access и т. д.

Создание БД. Этапы проектирования

Создание БД начинается с проектирования.

Этапы проектирования БД:

Исследование предметной области;

Анализ данных (сущностей и их атрибутов);

Определение отношений между сущностями и определение первичных и вторичных (внешних) ключей.

В процессе проектирования определяется структура реляционной БД (состав таблиц, их структура и логические связи). Структура таблицы определяется составом столбцов, типом данных и размерами столбцов, ключами таблицы.

К базовым понятиями модели БД «сущность – связь» относятся: сущности, связи между ними и их атрибуты (свойства).

Сущность – любой конкретный или абстрактный объект в рассматриваемой предметной области. Сущности – это базовые типы информации, которые хранятся в БД (в реляционной БД каждой сущности назначается таблица). К сущностям могут относиться: студенты, клиенты, подразделения и т.д. Экземпляр сущности и тип сущности - это разные понятия. Понятие тип сущности относится к набору однородных личностей, предметов или событий, выступающих как целое (например, студент, клиент и т.д.). Экземпляр сущности относится, например, к конкретной личности в наборе. Типом сущности может быть студент, а экземпляром – Петров, Сидоров и т. д.

Атрибут – это свойство сущности в предметной области. Его наименование должно быть уникальным для конкретного типа сущности. Например, для сущности студент могут быть использованы следующие атрибуты: фамилия, имя, отчество, дата и место рождения, паспортные данные и т.д. В реляционной БД атрибуты хранятся в полях таблиц.

Связь – взаимосвязь между сущностями в предметной области. Связи представляют собой соединения между частями БД (в реляционной БД – это соединение между записями таблиц).

Сущности – это данные, которые классифицируются по типу, а связи показывают, как эти типы данных соотносятся один с другим. Если описать некоторую предметную область в терминах сущности – связь, то получим модель сущность - связь для этой БД.

Рассмотрим предметную область: Деканат (Успеваемость студентов)

В БД «Деканат» должны храниться данные о студентах, группах студентов, об оценках студентов по различным дисциплинам, о преподавателях, о стипендиях и т.д. Ограничимся данными о студентах, группах студентов и об оценках студентов по различным дисциплинам. Определим сущности, атрибуты сущностей и основные требования к функциям БД с ограниченными данными.

Основными предметно-значимыми сущностями БД «Деканат» являются: Студенты, Группы студентов, Дисциплины, Успеваемость.

Основные предметно-значимые атрибуты сущностей:

Студенты – фамилия, имя, отчество, пол, дата и место рождения, группа студентов;

Группы студентов – название, курс, семестр;

Дисциплины – название, количество часов

Успеваемость – оценка, вид контроля.

Основные требования к функциям БД:

Выбрать успеваемость студента по дисциплинам с указанием общего количества часов и вида контроля;

Выбрать успеваемость студентов по группам и дисциплинам;

Выбрать дисциплины, изучаемые группой студентов на определенном курсе или

определенном семестре.

Из анализа данных предметной области следует, что каждой сущности необходимо назначить простейшую двумерную таблицу (отношения). Далее необходимо установить логические связи между таблицами. Между таблицами Студенты и Успеваемость необходимо установить такую связь, чтобы каждой записи из таблицы Студенты соответствовало несколько записей в таблице Успеваемость, т.е. один – ко – многим, так как у каждого студента может быть несколько оценок.

Логическая связь между сущностями Группы – Студенты определена как один – ко – многим исходя из того, что в группе имеется много студентов, а каждый студент входит в состав одной группе. Логическая связь между сущностями Дисциплины – Успеваемость определена как один – ко – многим, потому что по каждой дисциплине может быть поставлено несколько оценок различным студентам.

На основе вышеизложенного составляем модель сущность – связь для БД «Деканат» - стрелка является условным обозначением связи: один – ко – многим.

Для создания БД необходимо применить одну из известных СУБД, например СУБД Access.

Процесс проектирования включает в себя следующие этапы.

    Инфологическое проектирование.

    Определение требований к операционной обстановке, в которой будет функционировать информационная система.

    Выбор системы управления базой данных (СУБД) и других инструментальных программных средств.

    Логическое проектирование БД.

    Физическое проектирование БД.

1.1. Инфологическое проектирование.

Процесс проектирования информационных систем является достаточно сложной задачей. Он начинается с построения инфологической модели данных, то есть, идентификации сущностей.

Инфологическая модель предметной области (ПО) представляет собой описание структуры и динамики ПО, характера информационных потребностей пользователей в терминах, понятных пользователю и не зависимых от реализации БД. Это описание выражается в терминах не отдельных объектов ПО и связей между ними, а их типов, связанных с ними ограничений целостности и тех процессов, которые приводят к переходу предметной области из одного состояния в другое.

В настоящее время применяют проектирование с использованием метода "Сущность-связь"(entity–relation, ER–method), который является комбинацией предметного и прикладного методов и обладает достоинствами обоих.

Этап инфологического проектирования начинается с моделирования ПО. Проектировщик разбивает её на ряд локальных областей, каждая из которых (в идеале) включает в себя информацию, достаточную для обеспечения запросов отдельной группы будущих пользователей или решения отдельной задачи (подзадачи). Каждое локальное представление моделируется отдельно, затем они объединяются.

Выбор локального представления зависит от масштабов ПО. Обычно она разбивается на локальные области таким образом, чтобы каждая из них соответствовала отдельному внешнему приложению и содержала 6-7 сущностей.

Сущность – это объект, о котором в системе будет накапливаться информация. Сущности бывают как физически существующие (например, СОТРУДНИК или АВТОМОБИЛЬ ), так и абстрактные (например, ЭКЗАМЕН или ДИАГНОЗ ).

Для сущностей различают класс, тип сущности и экземпляр. Существует три основных класса сущностей: стержневые , ассоциативные и характеристические , а также подкласс ассоциативных сущностей – обозначения .

Стержневая сущность (стержень ) – это независимая сущность, которая не является ни ассоциацией, ни обозначением, ни характеристикой. Такие сущности имеют независимое существование, хотя они и могут обозначать другие сущности.

Ассоциативная сущность (ассоциация ) – это связь вида "многие-ко-многим" между двумя или более сущностями или экземплярами сущности. Ассоциации рассматриваются как полноправные сущности, они могут: участвовать в других ассоциациях и обозначениях точно так же, как стержневые сущности; обладать свойствами, т.е. иметь не только набор ключевых атрибутов, необходимых для указания связей, но и любое число других атрибутов, характеризующих связь.

Характеристическая сущность ( характеристика ) – это связь вида "многие-к-одной" или "одна-к-одной" между двумя сущностями (частный случай ассоциации). Единственная цель характеристики в рамках рассматриваемой предметной области состоит в описании или уточнении некоторой другой сущности. Необходимость в них возникает в связи с тем, что сущности реального мира имеют иногда многозначные свойства.

Например, муж может иметь несколько жен, книга – несколько характеристик переиздания (исправленное, дополненное, ...) и т.д.

Существование характеристики полностью зависит от характеризуемой сущности: женщины лишаются статуса жен, если умирает их муж.

Обозначающая сущность ( обозначение ) – это связь вида "многие-к-одной" или "одна-к-одной" между двумя сущностями и отличается от характеристики тем, что не зависит от обозначаемой сущности. Обозначения используют для хранения повторяющихся значений больших текстовых атрибутов: "кодификаторы" изучаемых студентами дисциплин, наименований организаций и их отделов, перечней товаров и т.п.

Как правило, обозначения не рассматриваются как полноправные сущности, хотя это не привело бы к какой-либо ошибке. Обозначения и характеристики не являются полностью независимыми сущностями, поскольку они предполагают наличие некоторой другой сущности, которая будет "обозначаться" или "характеризоваться". Однако они все же представляют собой частные случаи сущности и могут, конечно, иметь свойства, могут участвовать в ассоциациях, обозначениях и иметь свои собственные (более низкого уровня) характеристики. Подчеркнем также, что все экземпляры характеристики должны быть обязательно связаны с каким-либо экземпляром характеризуемой сущности. Однако допускается, чтобы некоторые экземпляры характеризуемой сущности не имели связей.

Тип сущности характеризуется именем и списком свойств, а экземпляр – конкретными значениями свойств.

Типы сущностей можно классифицировать как сильные и слабые . Сильные сущности существуют сами по себе, а существование слабых сущностей зависит от существования сильных.

Например, читатель библиотеки – сильная сущность, а абонемент этого читателя – слабая, которая зависит от наличия соответствующего читателя.

Слабые сущности называют подчинёнными (дочерними) , а сильные – базовыми (основными, родительскими) .

Для каждой сущности выбираются свойства (атрибуты).

Различают:

    Идентифицирующие и описательные атрибуты . Идентифицирующие атрибуты имеют уникальное значение для сущностей данного типа и являются потенциальными ключами. Они позволяют однозначно распознавать экземпляры сущности. Из потенциальных ключей выбирается один первичный ключ (ПК). В качестве ПК обычно выбирается потенциальный ключ, по которому чаще происходит обращение к экземплярам записи. Кроме того, ПК должен включать в свой состав минимально необходимое для идентификации количество атрибутов. Остальные атрибуты называются описательными и заключают в себе интересующие свойства сущности.

    Составные и простые атрибуты . Простой атрибут состоит из одного компонента, его значение неделимо. Составной атрибут является комбинацией нескольких компонентов, возможно, принадлежащих разным типам данных (например, ФИО или адрес). Решение о том, использовать составной атрибут или разбивать его на компоненты, зависит от характера его обработки и формата пользовательского представления этого атрибута.

    Однозначные и многозначные атрибуты (могут иметь соответственно одно или много значений для каждого экземпляра сущности).

    Основные и производные атрибуты . Значение основного атрибута не зависит от других атрибутов. Значение производного атрибута вычисляется на основе значений других атрибутов (например, возраст студента вычисляется на основе даты его рождения и текущей даты).

Спецификация атрибута состоит из его названия , указания типа данных и описания ограничений целостности – множества значений (или домена), которые может принимать данный атрибут.

Далее осуществляется спецификация связей внутри локального представления. Связи могут иметь различный содержательный смысл (семантику). Различают связи типа "сущность-сущность", "сущность-атрибут" и "атрибут-атрибут" для отношений между атрибутами, которые характеризуют одну и ту же сущность или одну и ту же связь типа "сущность-сущность".

Каждая связь характеризуется именем, обязательностью , типом и степенью . Различают факультативные и обязательные связи. Если вновь порождённый объект одного типа оказывается по необходимости связанным с объектом другого типа, то между этими типами объектов существует обязательная связь (обозначается двойной линией). Иначе связь является факультативной .

По типу различают множественные связи "один к одному" (1:1), "один ко многим" (1:n) и "многие ко многим" (m:n). ER–диаграмма, содержащая различные типы связей, приведена на рис. 1. Обратите внимание, что обязательные связи на рис. 1 выделены двойной линией.

Степень связи определяется количеством сущностей, которые охвачены данной связью. Пример бинарной связи – связь между отделом и сотрудниками, которые в нём работают. Примером тернарной связи является связь типа экзамен между сущностями ДИСЦИПЛИНА , СТУДЕНТ , ПРЕПОДАВАТЕЛЬ . Из последнего примера видно, что связь также может иметь атрибуты (в данном случае это Дата проведения и Оценка ). Пример ER–диаграммы с указанием сущностей, их атрибутов и связей приведен на рис. 2.

Принимаемые проектные решения можно описать языком инфологического моделирования (ЯИМ), основанном на языке SQL, который позволяет дать удобное и полное описание любой сущности и, следовательно, всей базы данных. Например:

СОЗДАТЬ ТАБЛИЦУ Блюда *(Стержневая сущность)

ПЕРВИЧНЫЙ КЛЮЧ (БЛ)

ПОЛЯ (БЛ Целое, Блюдо Текст 60, Вид Текст 7)

ОГРАНИЧЕНИЯ (1. Значения поля Блюдо должны быть

уникальными; при нарушении вывод

сообщения "Такое блюдо уже есть".

2. Значения поля Вид должны принадлежать

набору: Закуска, Суп, Горячее, Десерт,

Напиток; при нарушении вывод сообщения

"Можно лишь Закуска, Суп, Горячее,

Десерт, Напиток");

СОЗДАТЬ ТАБЛИЦУ Состав *(Связывает Блюда и Продукты)

ПЕРВИЧНЫЙ КЛЮЧ (БЛ, ПР)

ВНЕШНИЙ КЛЮЧ (БЛ ИЗ Блюда

NULL-значения НЕ ДОПУСТИМЫ

УДАЛЕНИЕ ИЗ Блюда КАСКАДИРУЕТСЯ

ОБНОВЛЕНИЕ Блюда.БЛ КАСКАДИРУЕТСЯ)

ВНЕШНИЙ КЛЮЧ (ПР ИЗ Продукты

NULL-значения НЕ ДОПУСТИМЫ

УДАЛЕНИЕ ИЗ Продукты ОГРАНИЧИВАЕТСЯ

ОБНОВЛЕНИЕ Продукты.ПР КАСКАДИРУЕТСЯ)

ПОЛЯ (БЛ Целое, ПР Целое, Вес Целое)

ОГРАНИЧЕНИЯ (1. Значения полей БЛ и ПР должны принадлежать

набору значений из соответствующих полей таблиц

Блюда и Продукты; при нарушении вывод сообщения

"Такого блюда нет" или "Такого продукта нет".

2. Значение поля Вес должно лежать в пределах от 0.1 до 500 г.);

Однако такое описание не отличается наглядностью. Для достижения большей иллюстративности целесообразно дополнять проект используя языки инфологического моделирования "Сущность-связь" или "Таблица-связь

В ER диаграммах "Сущность-связь" сущности изображаются (рис.2) помеченными прямоугольниками , ассоциации помеченными ромбами или шестиугольниками , атрибуты помеченными овалами , а связи между ними – ненаправленными ребрами (линиями, соединяющими геометрические фигуры), над которыми может проставляться степень связи (1 или буква, заменяющая слово "много") и необходимое пояснение.

В языке инфологического моделирования "Таблица-связь" (рис.3) все сущности изображаются одностолбцовыми таблицами с заголовками , состоящими из имени и типа сущности . Строки таблицы – это перечень атрибутов сущности, а те из них, которые составляют первичный ключ, располагаются рядом и обводятся рамкой. Связи между сущностями указываются стрелками, направленными от первичных ключей или их составляющих.

(стержень)

(ассоциация)

(характеристика)

После того, как созданы локальные представления, выполняется их объединение. При небольшом количестве локальных областей (не более пяти) они объединяются за один шаг. В противном случае обычно выполняют бинарное объединение в несколько этапов.

При объединении проектировщик может формировать конструкции, производные по отношению к тем, которые были использованы в локальных представлениях. Такой подход может преследовать следующие цели:

    объединение в единое целое фрагментарных представлений о различных свойствах одного и того же объекта;

    введение абстрактных понятий, удобных для решения задач системы, установление их связи с конкретными понятиями, использованными в модели;

    образование классов и подклассов подобных объектов (например, класс "изделие" и подклассы типов изделий, производимых на предприятии).

На этапе объединения необходимо выявить и устранить все противоречия. Например, одинаковые названия семантически различных объектов или связей или несогласованные ограничения целостности на одни и те же атрибуты в разных приложениях. Устранение противоречий вызывает необходимость возврата к этапу моделирования локальных представлений с целью внесения в них соответствующих изменений.

По завершении объединения результаты проектирования являют собой концептуальную инфологическую модель предметной области. Модели локальных представлений – это внешние инфологические модели.

      ОПРЕДЕЛЕНИЕ ТРЕБОВАНИЙ К ОПЕРАЦИОННОЙ

ОБСТАНОВКЕ.

На этом этапе производится оценка требований к вычислительным ресурсам, необходимым для функционирования системы, определение типа и конфигурации конкретной ЭВМ, выбор типа и версии операционной системы. Объём вычислительных ресурсов зависит от предполагаемого объёма проектируемой базы данных и от интенсивности их использования. Если БД будет работать в многопользовательском режиме, то требуется подключение её к сети и наличие соответствующей многозадачной операционной системы.

Создание и внедрение в практику современных информационных систем автоматизированных баз данных выдвигает новые задачи проектирования, которые невозможно решать традиционными приемами и методами. Большое внимание необходимо уделять вопросам проектирования баз данных. От того, насколько успешно будет спроектирована база данных, зависит эффективность функционирования системы в целом, ее жизнеспособность и возможность расширения и дальнейшего развития. Поэтому вопрос проектирования баз данных выделяют как отдельное, самостоятельное направление работ при разработке информационных систем.

Проектирование баз данных -- это итерационный, многоэтапный процесс принятия обоснованных решений в процессе анализа информационной модели предметной области, требований к данным со стороны прикладных программистов и пользователей, синтеза логических и физических структур данных, анализа и обоснования выбора программных и аппаратных средств. Этапы проектирования баз данных связаны с многоуровневой организацией данных. Рассматривая вопрос проектирования баз данных, будем придерживаться такого многоуровневого представления данных: внешнего, инфологического, логического (даталогического) и внутреннего.

Такое представление уровней данных не единственное. Существуют и другие варианты многоуровневого представления данных. Так, в соответствии с предложениями исследовательской группы по системам управления данными Американского национального института стандартов ANSI/X3/SPARC, а также CODASYL (Conference on Data Systems Languages), как правило, выделяется три уровня представления данных:

  • · внешний уровень (с точки зрения конечного пользователя и прикладного программиста),
  • · концептуальный уровень (с точки зрения СУБД),
  • · внутренний уровень (с точки зрения системного программиста).

В соответствии с этой концепцией внешний уровень это часть (подмножество) концептуальной модели, необходимая для реализации какого-либо запроса или прикладной программы. То есть, если концептуальная модель выступает как схема, поддерживаемая конкретной СУБД, то внешний уровень -- это некоторая совокупность подсхем, необходимых для реализации конкретной прикладной программы или запроса пользователя.

Существует также другая точка зрения, в соответствии с которой под внешним уровнем понимают более общие понятия, связанные с изучением и анализом информационных потоков предметной области и их структуризацией. Некоторые авторы вводят вспомогательный уровень (промежуточный между внешним и даталогическим уровнями), который называется инфологическим. Он может выступать как самостоятельный или быть составной частью внешнего уровня.

Такая концепция более целесообразна с точки зрения понимания процесса проектирования БД. Поэтому будем рассматривать инфологический уровень как самостоятельный уровень представления данных. Внешний уровень в этом случае выступает как отдельный этап проектирования, на котором изучается все внемашинное информационное обеспечение, то есть формы документирования и представления данных, а также внешняя среда, в которой будет функционировать банк данных с точки зрения методов фиксации, сбора и передачи информации в базу данных.

При проектировании БД на внешнем уровне необходимо изучить функционирование объекта управления, для которого проектируется БД, всю первичную и выходную документацию с точки зрения определения того, какие именно данные необходимо сохранять в базе данных. Внешний уровень это, как правило, словесное описание входных и выходных сообщений, а также данных, которые целесообразно сохранять в БД. Описание внешнего уровня не исключает наличия элементов дублирования, избыточности и несогласованности данных. Поэтому для устранения этих аномалий и противоречий внешнего описания данных выполняется инфологическое проектирование.

Инфологическая модель является средством структуризации предметной области и понимания концепции семантики данных. Инфологическую модель можно рассматривать в основном как средство документирования и структурирования формы представления информационных потребностей, которая обеспечивает непротиворечивое общение пользователей и разработчиков системы.

Все внешние представления интегрируются на инфологическом уровне, где формируется инфологическая (каноническая) модель данных, которая не является простой суммой внешних представлений данных.

Инфологический уровень представляет собой информационно-логическую модель (ИЛМ) предметной области, из которой исключена избыточность данных и отображены информационные особенности объекта управление без учета особенностей и специфики конкретной СУБД. То есть инфологическое представление данных ориентированно преимущественно на человека, который проектирует или использует базу данных.

Логический (концептуальный) уровень построен с учетом специфики и особенностей конкретной СУБД. Этот уровень представления данных ориентирован больше на компьютерную обработку и на программистов, которые занимаются ее разработкой. На этом уровне формируется концептуальная модель данных, то есть специальным способом структурированная модель предметной области, которая отвечает особенностям и ограничениям выбранной СУБД. Модель логического уровня, поддерживаемую средствами конкретной СУБД, называют еще даталогической.

Инфологическая и даталогическая модели, которые отображают модель одной предметной области, зависимы между собой. Инфологическая модель может легко трансформироваться в даталогическую модель.

Внутренний уровень связан с физическим размещением данных в памяти ЭВМ. На этом уровне формируется физическая модель БД, которая включает структуры сохранения данных в памяти ЭВМ, в т.ч. описание форматов записей, порядок их логического или физического приведения в порядок, размещение по типам устройств, а также характеристики и пути доступа к данным. От параметров физической модели зависят такие характеристики функционирования БД: объем памяти и время реакции системы. Физические параметры БД можно изменять в процессе ее эксплуатации с целью повышения эффективности функционирование системы. Изменение физических параметров не предопределяет необходимости изменения инфологической и даталогической моделей. Схема взаимосвязи уровней представления данных в БД изображена на рис.1.1. В соответствии с этими уровнями проектируется БД. Проектирование БД-- этосложный и трудоемкий процесс, который требует привлечения многих высококвалифицированных специалистов. От того, насколько квалифицированно спроектирована БД, зависят производительность информационной системы и полнота обеспечения функциональных потребностей пользователей и прикладных программ. Неудачно спроектированная БД может усложнить процесс разработки

прикладного программного обеспечения, обусловить необходимость использования более сложной логики, которая, в свою очередь, увеличит время реакции системы, а в дальнейшем может привести к необходимости перепроектирования логической модели БД. Реструктуризация или внесение изменений в логическую модель БД это очень нежелательный процесс, поскольку он является причиной необходимости модификации или даже перепрограммирование отдельных задач. Все работы, которые выполняются на каждом этапе проектирования, должны интегрироваться со словарем данных. Каждый этап проектирования рассматривается как определенная последовательность итеративных процедур, в результате, которых формируется определенная модель БД.

Рис. 1.1.

Внешний уровень -- подготовительный этап инфологического проектирования.

Целью проектирования на внешнем уровне является разработка внемашинного информационного обеспечения, которое включает систему входной (первичной) документации, характеризующую определенную предметную область, систему классификации и кодирования технико-экономической информации, а также перечень соответствующих выходных сообщений, которые нужно формировать с помощью БнД.

Существуют два подхода к проектированию баз данных на внешнем уровне: «от предметной области» и «от запроса». Подход «от предметной области» состоит в том, что формируется внешнее информационное обеспечение всей предметной области без учета потребностей пользователей и прикладных программ. Иногда этот подход называют еще объектным или непроцессным.

При подходе «от запроса» основным источником информации о предметной области есть изучение запросов пользователей и потребностей прикладных программ. Этот подход также называется процессным или функциональным. При таком подходе БД проектируется для выполнения текущих задач управления без учета возможности расширение системы и возникновение новых задач управление. Преимущество подхода «от предметной области» это его объективность, системность при отображении ПО и стойкость информационной модели, возможность реализации большого количества прикладных программ и запросов, в том числе незапланированных при создании БД. Недостатком этого подхода является значительный объем работ, которые необходимо выполнить при определении информации, подлежащей хранению в БД, что, соответственно, усложняет и увеличивает срок разработки проекта.

Функциональный подход ориентирован на реализацию текущих требований пользователей и прикладных программ без учета перспектив развития системы. При его использовании могут возникнуть сложности в агрегации требований разных пользователей и прикладных программ. Тем не менее, при таком подходе значительно уменьшается трудоемкость проектирования, и поэтому возможно создать систему с высокими эксплуатационными характеристиками. Однако взятый в отдельности любой из этих методов не может дать достаточно информации для проектирования рациональной структуры БД. Поэтому при проектировании БД целесообразно совместно использовать эти два подхода. Если схематично представить процесс проектирования БД на внешнем уровне, то он состоит из таких работ.

  • 1. Определение функциональных задач предметной области, которые подлежат автоматизированному решению. Поскольку основной целью создания БД есть обеспечение информацией функций обработки данных, то, прежде всего, необходимо изучить все функции предметной области (объекта управления), для которой разрабатывается база данных, и проанализировать их особенности. Функции и функциональные особенности объекта управление необходимо изучать в неразрывной связи с изучением функциональных требований к данным со стороны будущих пользователей информационной системы. Изучение и анализ предусматривают выявление информационных потребностей и определения информационных потоков. Эти работы можно выполнять обследованием предметной области и анкетированием ее сотрудников. Результатом такого изучения может быть перечень функциональных задач, которые должны решаться автоматизированным способом с использованием БД.
  • 2. Изучение и анализ оперативных первичных документов. Изучив функции и определив перечень функциональных задач, которые подлежат автоматизированному решению, переходят к изучению оперативных документов, которые используются на входе каждой задачи или их комплекса. Изучив и проанализировав все оперативные документы (как внешние, так и внутренние), которые используются на входе каждой задачи, определяют, какие реквизиты этих документов нужно сохранять в БД.
  • 3. Изучение нормативно-справочных документов. На третьем шаге изучают и анализируют всю нормативно-справочную документацию. К такой документации принадлежат различные классификаторы, сметы, договоры, нормативы, законодательные акты по налоговой политике, плановая документация и т.п. Распределение и отдельный анализ оперативной и нормативно-справочной информации обусловлены технологически. В базы данных различаются технологии создания и ведения файлов условно-постоянной информации, размещенной в нормативно-справочной документации, и файлов оперативной информации.
  • 4. Изучение процессов преобразования входных сообщений в выходные.

Прежде всего, изучаются все выходные сообщения, которые выдаются на печать или на экран и сохраняются в виде выходных массивов на МД. Это необходимо для того, чтобы определить, которые из атрибутов входных сообщений нужно сохранять в БД для получения выходных сообщений. Кроме того, на этом этапе определяются те показатели, которые получают во время решения задачи в результате выполнения определенных вычислений. По каждому расчетному показателю следует определить алгоритм его формирования и убедиться в том, что этот показатель можно получить на основе атрибутов оперативной и нормативно-справочной информации, которые были определены на втором и третьем шагах. Если определенных данных не хватает для полного выполнения расчетов, необходимо возвратиться назад, провести дополнительное исследование и

определить, где и каким способом можно получить атрибуты, которых не хватает. Кроме того, нужно определиться, какие из расчетных показателей целесообразно сохранять в БД. Показатели, полученные расчетным путем, как правило, в БД не сохраняются. Исключением являются случаи, когда расчетный показатель нужно использовать для решения других задач или для данной задачи, но в следующие календарные периоды.

При проведении проектных работ на внешнем уровне надо учитывать то, что для выполнения определенных функций в БД необходимо сохранять дополнительные данные, которые не отображены в документах (данные календаря, статистические данные и т.п.). Обобщенная схема процесса изучения документов и данных при проектировании на внешнем уровне изображена на рис.1.2.


Рис.1.2.

Такое изучение необходимо провести по каждой функциональной задаче или их комплексу, которые будут решаться с помощью БД.

Результатом проектирования на внешнем уровне будет перечень атрибутов (реквизитов) оперативной и условно-постоянной информации, которые необходимо хранить в БД, с указанием источников их получения и формы представления.

Однако этот перечень не исключает возможности существования в нем збыточности, дублирования, несогласованности и других недостатков. Поэтому на этом процесс не заканчивается, а осуществляется переход к этапу инфологического проектирования.

Этапы проектирования баз данных

Невозможно создать БД без подробного ее описания, также как и не возможно сделать какое-либо сложное изделие без чертежа и подробного описания технологий его изготовления. Другими словами, нужен проект. Проектом принято считать эскиз некоторого устройства, который в дальнейшем будет воплощен в реальность.

Процесс проектирования БД представляет собой процесс переходов от неформального словесного описания информационной структуры предметной области к формализованному описанию объектов предметной области в терминах некоторой модели. Конечной целью проектирования является построение конкретной БД. Очевидно, что процесс проектирования сложен и поэтому имеет смысл разделить его на логически завершенные части – этапы.

Можно выделить пять основных этапов проектирования БД:

1. Сбор сведений и системный анализ предметной области.

2. Инфологическое проектирование.

3. Выбор СУБД.

4. Даталогическое проектирование.

5. Физическое проектирование.

Сбор сведений и системный анализ предметной области - это первый и важнейший этап при проектировании БД. В нем необходимо провести подробное словесное описание объектов предметной области и реальных связей, присутствующих между реальными объектами. Желательно чтобы в описании определялись взаимосвязи между объектами предметной области.

В общем случае выделяют два подхода к выбору состава и структуры предметной области:

· Функциональный подход – применяется тогда, когда заранее известны функции некоторой группы лиц и комплексы задач, для обслуживания которых создается эта БД, т.е. четко выделяется минимальный необходимый набор объектов предметной области под описание.

· Предметный подход – когда информационные потребности заказчиков БД четко не фиксируются и могут быть многоаспектными и динамичными. В данном случае минимальный набор объектов предметной области выделить сложно. В описание предметной области включаются такие объекты и взаимосвязи, которые наиболее характерны и существенны для нее. При этом БД становится предметной, и подходит для решения множества задач (что кажется наиболее заманчивым). Однако трудность всеобщего охвата предметной области и невозможность конкретизации потребностей пользователей приводит к избыточно сложной схеме БД, которая для некоторых задач будет неэффективной.

Системный анализ должен заканчиваться подробным описанием информации об объектах предметной области, которая должна храниться в БД, формулировкой конкретных задач, которые будут решаться с использованием данной БД с кратким описанием алгоритмов их решения, описанием выходных и входных документов при работе с БД.

Инфологическое проектирование – частично формализованное описание объектов предметной области в терминах некоторой семантической модели.

Зачем нужна инфологическая модель, и какую пользу она дает проектировщикам? Дело в том, что процесс проектирования длительный, требует обсуждений с заказчиком и специалистами в предметной области. Кроме того, при разработке серьезных корпоративных информационных систем проект базы данных является фундаментом, на котором строится вся система в целом, и вопрос о возможности кредитования часто решается экспертами банка на основании именно грамотно сделанного инфологического проекта БД. Следовательно, инфологическая модель должна включать такое формализованное описание предметной области, которое легко будет восприниматься не только специалистами в области БД. Описание должно быть настолько емким, чтобы можно было оценить глубину и корректность проработки проекта БД.

На сегодняшний день наиболее широкое распространение получила модель Чена «Сущность-связь» (Entity Relationship), она стала фактическим стандартом в инфологическом моделировании, и получило название ER – модель.

Выбор СУБД осуществляется на основе различных требований к БД и, соответственно, возможностей СУБД, а также в зависимости от имеющегося опыта разработчиков.

Даталогическое проектирование есть описание БД в терминах принятой даталогической модели данных. В реляционных БД даталогическое или логическое проектирование приводит к разработке схемы БД, т.е. совокупности схем отношений, которые адекватно моделируют объекты предметной области и семантические связи между объектами. Основой анализа корректности схемы являются функциональные зависимости между атрибутами БД. В некоторых случаях между атрибутами отношений могут появиться нежелательные зависимости, которые вызывают побочные эффекты и аномалии при модификации БД. Под модификацией понимают внесение новых данных в БД, удаление данных из БД, а также обновление значений некоторых атрибутов. Для ликвидации возможных аномалий предполагается проведение нормализации отношений БД.

Этап логического проектирования не заключается только в проектировании схемы отношений. В результате выполнения этого этапа, как правило, должны быть получены следующие результирующие документы:

· Описание концептуальной схемы БД в терминах выбранной СУБД.

· Описание внешних моделей в терминах выбранной СУБД.

· Описание декларативных правил поддержки целостности БД.

· Разработка процедур поддержки семантической целостности БД.

Физическое проектирование заключается в увязке логической структуры БД и физической среды хранения с целью наиболее эффективного размещения данных, т.е. отображение логической структуры БД в структуру хранения. Решается вопрос размещения хранимых данных в пространстве памяти, выбора эффективных методов доступа к различным компонентам «физической» БД, решаются вопросы обеспечения безопасности и сохранности данных. Ограничения, имеющиеся в логической модели данных, реализуются различными средствами СУБД, например, при помощи индексов, декларативных ограничений целостности, триггеров, хранимых процедур. При этом опять-таки решения, принятые на уровне логического моделирования определяют некоторые границы, в пределах которых можно развивать физическую модель данных. Точно также, в пределах этих границ можно принимать различные решения. Например, отношения, содержащиеся в логической модели данных, должны быть преобразованы в таблицы, но для каждой таблицы можно дополнительно объявить различные индексы, повышающие скорость обращения к данным.

Кроме того, для повышения производительности могут использоваться возможности параллельной обработки данных. В результате БД может размещаться на нескольких сетевых компьютерах. С другой стороны могут использоваться преимущества многопроцессорных систем.



Для обеспечения безопасности и сохранности данных решаются вопросы способы восстановления после сбоев, резервного копирования информации, настройка систем защиты под выбранную политику безопасности и т.д.

Необходимо отметить, что некоторые современные реляционные СУБД в основном используют физические структуры и методы доступа, опирающиеся на технологию проектирования файла, что по существу практически снимает вопрос о физическом проектировании.

Таким образом, ясно, что решения, принятые на каждом этапе моделирования и разработки базы данных, будут сказываться на дальнейших этапах. Поэтому особую роль играет принятие правильных решений на ранних этапах моделирования .

Проектирование баз данных

Этапы проектирования БД:

1. Системный анализ и словесное описание информационных объектов предметной области и связей между ними.

2. Семантическое моделирование предметной области – частично формализованное описание объектов предметной области в терминах некоторой семантической модели, например, ER-модели.

3. Выбор стандартной СУБД.

4. Логическое проектирование БД, то есть описание БД в терминах принятой модели данных. На этом этапе определяются число и структура таблиц, формируются запросы к БД, определяются типы отчетных документов, разрабатываются алгоритмы обработки информации, создаются формы для ввода и редактирования данных и т.д.

5. Физическое проектирование БД, то есть выбор эффективного размещения БД на внешних носителях для обеспечения максимального быстродействия при обработке данных.

4.2 Модель «сущность-связь» (ER-модель)

Сущность – это некоторый объект реального мира, который может существовать независимо. Сущность имеет экземпляры , отличающиеся друг от друга значениями атрибутов и допускающие однозначную идентификацию. Атрибут – это поименованная характеристика сущности. Например, сущность Книга характеризуется такими атрибутами, как автор, название, издательство и т.д. Конкретные книги являются экземплярами сущности Книга . Они отличаются значениями указанных атрибутов и однозначно идентифицируются атрибутом «название». Атрибут, который уникальным образом идентифицирует экземпляры сущности, называется ключом . Ключ может быть составным , представляющим комбинацию нескольких атрибутов.

Предположим, что проектируется база данных для предметной области БАНК. Он имеет филиалы, управляемые менеджерами. У клиентов есть счета разных типов: текущие, срочные, до востребования и т.д., которые обрабатываются в филиалах. В предметной области могут быть выделены четыре сущности: Филиал, Менеджер, Счет, Клиент.

На ER-диаграмме сущность изображается прямоугольником, в котором указывается ее имя, например:

Связь представляет взаимодействие между сущностями. Она характеризуется мощностью (степенью связи) , которая показывает, сколько сущностей участвует в связи. Связь между двумя сущностями называется бинарной . На ER-диаграмме связь изображается ромбом, например:

В предметной области БАНК можно выделить 3 связи:

1. Менеджер Управляет Филиалом

2. Филиал Обрабатывает Счет

3. Клиент Имеет Счет

Важной характеристикой связи является тип связи (кратность) . Рассмотрим типы вышеуказанных связей. Так как один менеджер управляет только одним филиалом, то 1-я связь имеет тип «один-к-одному» (1:1).

Так как один филиал обрабатывает несколько счетов, а каждый счет обрабатывается только одним филиалом, то 2-я связь имеет тип «один-ко-многим» (1:М).

Так как один счет может совместно использоваться несколькими клиентами и один клиент может иметь несколько счетов, то 3-я связь имеет тип «многие-ко-многим» (M:N).

Степень участия определяет, участвуют ли в связи все или только некоторые экземпляры сущности. Она может быть обязательной или необязательной .

Если не каждый экземпляр сущности А связан с каким-либо экземпляром сущности В, то степень участия сущности А является необязательной . Это изображается на ER-диаграмме черным кружком, помещенным на линии связи возле сущности А.

Если каждый экземпляр сущности А связан с каким-либо экземпляром сущности В, то степень участия сущности А является обязательной . При этом на ER-диаграмме черный кружок на линии связи помещается в прямоугольник рядом с сущностью А. Напр., связь Сотрудник Регистрирует Клиентов имеет тип (1:М). При этом не каждый сотрудник регистрирует клиентов (необязательное участие), но каждый клиент регистрируется сотрудником (обязательное участие):

Предположим, что в рассматриваемой предметной области БАНК степень участия всех четырех сущностей является обязательной. Тогда ER-модель будет иметь вид:

Каждая из четырех сущностей модели может быть описана своим набором атрибутов.

ER-модель в совокупности с наборами атрибутов сущностей может служить примером семантической (концептуальной) модели предметной области или концептуальной схемы базы данных.

Похожие публикации