Индекс модуляции чм. Частотно-манипулированные сигналы FSK (frequency shift key) и FSK сигналы с непрерывной фазой CPFSK (continuous phase FSK). Сигналы с частотной модуляцией

Общие сведения о модуляции

Модуляция это процесс преобразования одного или нескольких информационных параметров несущего сигнала в соответствии с мгновенными значениями информационного сигнала.

В результате модуляции сигналы переносятся в область более высоких частот.

Использование модуляции позволяет:

  • согласовать параметры сигнала с параметрами линии;
  • повысить помехоустойчивость сигналов;
  • увеличить дальность передачи сигналов;
  • организовать многоканальные системы передачи (МСП с ЧРК).

Модуляция осуществляется в устройствах модуляторах . Условное графическое обозначение модулятора имеет вид:

Рисунок 1 - Условное графическое обозначение модулятора

При модуляции на вход модулятора подаются сигналы:

u(t) — модулирующий , данный сигнал является информационным и низкочастотным (его частоту обозначают W или F);

S(t) — модулируемый (несущий) , данный сигнал является неинформационным и высокочастотным (его частота обозначается w 0 или f 0);

Sм(t) — модулированный сигнал , данный сигнал является информационным и высокочастотным.

В качестве несущего сигнала может использоваться:

  • гармоническое колебание, при этом модуляция называется аналоговой или непрерывной ;
  • периодическая последовательность импульсов, при этом модуляция называется импульсной ;
  • постоянный ток, при этом модуляция называется шумоподобной .

Так как в процессе модуляции изменяются информационные параметры несущего колебания, то название вида модуляции зависит от изменяемого параметра этого колебания.

1. Виды аналоговой модуляции:

  • амплитудная модуляция (АМ), происходит изменение амплитуды несущего колебания;
  • частотная модуляция (ЧМ), происходит изменение частоты несущего колебания;
  • фазовая модуляция (ФМ), происходит изменение фазы несущего колебания.

2. Виды импульсной модуляции:

  • амплитудно-импульсная модуляция (АИМ) , происходит изменение амплитуды импульсов несущего сигнала;
  • частотно-импульсная модуляция (ЧИМ) , происходит изменение частоты следования импульсов несущего сигнала;
  • Фазо-импульсная модуляция (ФИМ) , происходит изменение фазы импульсов несущего сигнала;
  • Широтно-импульсная модуляция (ШИМ) , происходит изменение длительности импульсов несущего сигнала.

Амплитудная модуляция

Амплитудная модуляция — процесс изменения амплитуды несущего сигнала в соответствии с мгновенными значениями модулирующего сигнала.

амплитудно-модулированного (АМ) сигнала при гармоническом модулирующем сигнале. При воздействии модулирующего сигнала

u (t )= Um u sin ? t (1)

на несущее колебание

S (t )= Um sin (? 0 t + ? ) (2)

происходит изменение амплитуды несущего сигнала по закону:

Uам(t)=Um+ а ам Um u sin ? t (3)

где а ам — коэффициент пропорциональности амплитудной модуляции.

Подставив (3) в математическую модель (2) получим:

Sам(t)=(Um+ а ам Um u sin ? t) sin(? 0 t+ ? ). (4)

Вынесем Um за скобки:

Sам(t)=Um(1+ а ам Um u /Um sin ? t) sin (? 0 t+ ? ) (5)

Отношение а ам Um u /Um = m ам называется коэффициентом амплитудной модуляции . Данный коэффициент не должен превышать единицу, т. к. в этом случае появляются искажения огибающей модулированного сигнала называемые перемодуляцией . С учетом m ам математическая модель АМ сигнала при гармоническом модулирующем сигнале будет иметь вид:

Sам(t)=Um(1+m ам sin ? t) sin(? 0 t+ ? ). (6)

Если модулирующий сигнал u(t) является негармоническим, то математическая модель АМ сигнала в этом случае будет иметь вид:

Sам(t)=(Um+ а ам u(t)) sin (? 0 t+ ? ) . (7)

Рассмотрим спектр АМ сигнала для гармонического модулирующего сигнала. Для этого раскроем скобки математической модели модулированного сигнала, т. е. представим его в виде суммы гармонических составляющих.

Sам(t)=Um(1+m ам sin ? t) sin (? 0 t+ ? ) = Um sin (? 0 t+ ? ) +

+m ам Um/2 sin((? 0 ? ) t+ j ) m ам Um/2 sin((? 0 + ? )t+ j ). (8)

Как видно из выражения в спектре АМ сигнала присутствует три составляющих: составляющая несущего сигнала и две составляющих на комбинационных частотах. Причем составляющая на частоте ? 0 —? называется нижней боковой составляющей , а на частоте ? 0 + ? верхней боковой составляющей. Спектральные и временные диаграммы модулирующего, несущего и амплитудно-модулированного сигналов имеют вид (рисунок 2).

Рисунок 2 - Временные и спектральные диаграммы модулирующего (а), несущего (б) и ампдтудно-модулированного (в) сигналов

D? ам =(? 0 + ? ) (? 0 ? )=2 ? (9)

Если же модулирующий сигнал является случайным, то в этом случае в спектре составляющие модулирующего сигнала обозначают символически треугольниками (рисунок 3).

Составляющие в диапазоне частот (? 0 — ? max) ? (? 0 — ? min) образуют нижнюю боковую полосу (НБП), а составляющие в диапазоне частот (? 0 + ? min) ? (? 0 + ? max) образуют верхнюю боковую полосу (ВБП)

Рисунок 3 - Временные и спектральные диаграммы сигналов при случайном модулирующем сигнале

Ширина спектра для данного сигнала будет определятся

D ? ам =(? 0 + ? max ) (? 0 ? min )=2 ? max (10)

На рисунке 4 приведены временные и спектральные диаграммы АМ сигналов при различных индексах m ам. Как видно при m ам =0 модуляция отсутствует, сигнал представляет собой немодулированную несущую, соответственно и спектр этого сигнала имеет только составляющую несущего сигнала (рисунок 4,

Рисунок 4 - Временные и спектральные диаграммы АМ сигналов при различных mам: а) при mам=0, б) при mам=0,5, в) при mам=1, г) при mам>1

а), при индексе модуляции m ам =1 происходит глубокая модуляция, в спектре АМ сигнала амплитуды боковых составляющих равны половине амплитуды составляющей несущего сигнала (рисунок 4в), данный вариант является оптимальным, т. к. энергия в большей степени приходится на информационные составляющие. На практике добиться коэффициента равного едините тяжело, поэтому добиваются соотношения 01 происходит перемодуляция, что, как отмечалось выше, приводит к искажению огибающей АМ сигнала, в спектре такого сигнала амплитуды боковых составляющих превышают половину амплитуды составляющей несущего сигнала (рисунок 4г).

Основными достоинствами амплитудной модуляции являются:

  • узкая ширина спектра АМ сигнала;
  • простота получения модулированных сигналов.

Недостатками этой модуляции являются:

  • низкая помехоустойчивость (т. к. при воздействии помехи на сигнал искажается его форма — огибающая, которая и содержит передаваемое сообщение);
  • неэффективное использование мощности передатчика (т. к. наибольшая часть энергии модулированного сигнала содержится в составляющей несущего сигнала до 64%, а на информационные боковые полосы приходится по 18%).

Амплитудная модуляция нашла широкое применение:

  • в системах телевизионного вещания (для передачи телевизионных сигналов);
  • в системах звукового радиовещания и радиосвязи на длинных и средних волнах;
  • в системе трехпрограммного проводного вещания.

Балансная и однополосная модуляция

Как отмечалось выше, одним из недостатков амплитудной модуляции является наличие составляющей несущего сигнала в спектре модулированного сигнала. Для устранения этого недостатка применяют балансную модуляцию. При балансной модуляции происходит формирование модулированного сигнала без составляющей несущего сигнала. В основном это осуществляется путем использования специальных модуляторов: балансного или кольцевого. Временная диаграмма и спектр балансно-модулированного (БМ) сигнала представлен на рисунке 5.

Рисунок 5 - Временные и спектральные диаграммы модулирующего (а), несущего (б) и балансно-модулированного (в) сигналов

Также особенностью модулированного сигнала является наличие в спектре двух боковых полос несущих одинаковую информацию. Подавление одной из полос позволяет уменьшить спектр модулированного сигнала и, соответственно, увеличить число каналов в линии связи. Модуляция при которой формируется модулированный сигнал с одной боковой полосой (верхней или нижней) называется однополосной. Формирование однополосно-модулированного (ОМ) сигнала осуществляется из БМ сигнала специальными методами, которые рассматриваются ниже. Спектры ОМ сигнала представлены на рисунке 6.

Рисунок 6 - Спектральные диаграммы однополосно-модулированных сигналов: а) с верхней боковой полосой (ВБП), б) с нижней боковой полосой (НБП)

Частотная модуляция

Частотная модуляция — процесс изменения частоты несущего сигнала в соответствии с мгновенными значениями модулирующего сигнала.

Рассмотрим математическую модель частотно-модулированного (ЧМ) сигнала при гармоническом модулирующем сигнале. При воздействии модулирующего сигнала

u (t ) = Um u sin ? t

на несущее колебание

S (t ) = Um sin (? 0 t + ? )

происходит изменение частоты несущего сигнала по закону:

w чм (t) = ? 0 + а чм Um u sin ? t (9)

где а чм — коэффициент пропорциональности частотной модуляции.

Поскольку значение sin ? t может изменятся в диапазоне от -1 до 1, то наибольшее отклонение частоты ЧМ сигнала от частоты несущего сигнала составляет

? ? m = а чм Um u (10)

Величина Dw m называется девиацией частоты. Следовательно, девиация частоты показывает наибольшее отклонение частоты модулированного сигнала от частоты несущего сигнала.

Значение ? чм (t) непосредственно подставить в S(t) нельзя, т. к. аргумент синуса ? t+j является мгновенной фазой сигнала?(t) которая связана с частотой выражением

? = d ? (t )/ dt (11)

Отсюда следует что, чтобы определить? чм (t) необходимо проинтегрировать ? чм (t)

Причем в выражении (12) ? является начальной фазой несущего сигнала.

Отношение

Мчм = ?? m / ? (13)

называется индексом частотной модуляции .

Учитывая (12) и (13) математическая модель ЧМ сигнала при гармоническом модулирующем сигнале будет иметь вид:

S чм (t)=Um sin(? 0 t Мчм cos ? t+ ? ) (14)

Временные диаграммы, поясняющие процесс формирования частотно-модулированного сигнала приведены на рисунке 7. На первых диаграммах а) и б) представлены соответственно несущий и модулирующий сигналы, на рисунке в) представлена диаграмма показывающая закон изменения частоты ЧМ сигнала. На диаграмме г) представлен частогтно-модулированный сигнал соответствующий заданному модулирующему сигналу, как видно из диаграммы любое изменение амплитуды модулирующего сигнала вызывает пропорциональное изменение частоты несущего сигнала.

Рисунок 7 - Формирование ЧМ сигнала

Для построения спектра ЧМ сигнала необходимо разложить его математическую модель на гармонические составляющие. В результате разложения получим

S чм (t)= Um J 0 (M чм ) sin(? 0 t+ ? )

Um J 1 (M чм ) {cos[(? 0 ? )t+ j ]+ cos[(? 0 + ? )t+ ? ]}

Um J 2 (M чм ) {sin[(? 0 2 ? )t+ j ]+ sin[(? 0 +2 ? )t+ ? ]}+

+ Um J 3 (M чм ) {cos[(? 0 — 3 ? )t+ j ]+ cos[(? 0 +3 ? )t+ ? ]}

Um J 4 (M чм ) {sin[(? 0 4 ? )t+ j ]+ sin[(? 0 +4 ? )t+ ? ]} (15)

где J k (Mчм) — коэффициенты пропорциональности.

J k (Mчм) определяются по функциям Бесселя и зависят от индекса частотной модуляции. На рисунке 8 представлен график содержащий восемь функций Бесселя. Для определения амплитуд составляющих спектра ЧМ сигнала необходимо определить значение функций Бесселя для заданного индекса. Причем как

Рисунок 8 - Функции Бесселя

видно из рисунка различные функции имеют начало в различных значениях Мчм, а следовательно, количество составляющих в спектре будет определятся Мчм (с увеличивается индекса увеличивается и количество составляющих спектра). Например необходимо определить коэффициенты J k (Мчм) при Мчм=2. По графику видно, что при заданном индексе можно определить коэффициенты для пяти функций (J 0 , J 1 , J 2 , J 3 , J 4) Их значение при заданном индексе будет равно: J 0 =0,21; J 1 =0,58; J 2 =0,36; J 3 =0,12; J 4 =0,02. Все остальные функции начинаются после значения Мчм=2 и равны, соответственно, нулю. Для приведенного примера количество составляющих в спектре ЧМ сигнала будет равно 9: одна составляющая несущего сигнала (Um J 0) и по четыре составляющих в каждой боковой полосе (Um J 1 ; Um J 2 ; Um J 3 ; Um J 4).

Еще одной важной особенностью спектра ЧМ сигнала является то, что можно добиться отсутствия составляющей несущего сигнала или сделать ее амплитуду значительно меньше амплитуд информационных составляющих без дополнительных технических усложнений модулятора. Для этого необходимо подобрать такой индекс модуляции Мчм, при котором J 0 (Мчм) будет равно нулю (в месте пересечения функции J 0 с осью Мчм), например Мчм=2,4.

Поскольку увеличение составляющих приводит к увеличению ширины спектра ЧМ сигнала, то значит, ширина спектра зависит от Мчм (рисунок 9). Как видно из рисунка, при Мчм?0,5 ширина спектра ЧМ сигнала соответствует ширине спектра АМ сигнала и в этом случае частотная модуляция является узкополосной , при увеличении Мчм ширина спектра увеличивается, и модуляция в этом случае является широкополосной . Для ЧМ сигнала ширина спектра определяется

D ? чм =2(1+Мчм) ? (16)

Достоинством частотной модуляции являются:

  • высокая помехоустойчивость;
  • более эффективное использование мощности передатчика;
  • сравнительная простота получения модулированных сигналов.

Основным недостатком данной модуляции является большая ширина спектра модулированного сигнала.

Частотная модуляция используется:

  • в системах телевизионного вещания (для передачи сигналов звукового сопровождения);
  • системах спутникового теле- и радиовещания;
  • системах высококачественного стереофонического вещания (FM диапазон);
  • радиорелейных линиях (РРЛ);
  • сотовой телефонной связи.

Рисунок 9 - Спектры ЧМ сигнала при гармоническом модулирующем сигнале и при различных индексах Мчм: а) при Мчм=0,5, б) при Мчм=1, в) при Мчм=5

Фазовая модуляция

Фазовая модуляция — процесс изменения фазы несущего сигнала в соответствии с мгновенными значениями модулирующего сигнала.

Рассмотрим математическую модель фазо-модулированного (ФМ) сигнала при гармоническом модулирующем сигнале. При воздействии модулирующего сигнала

u (t ) = Um u sin ? t

на несущее колебание

S (t ) = Um sin (? 0 t + ? )

происходит изменение мгновенной фазы несущего сигнала по закону:

? фм(t) = ? 0 t+ ? + а фм Um u sin ? t (17)

где а фм — коэффициент пропорциональности частотной модуляции.

Подставляя ? фм(t) в S(t) получаем математическую модель ФМ сигнала при гармоническом модулирующем сигнале:

Sфм(t) = Um sin(? 0 t+ а фм Um u sin ? t+ ? ) (18)

Произведение а фм Um u =Dj m называется индексом фазовой модуляции или девиацией фазы .

Поскольку изменение фазы вызывает изменение частоты, то используя (11) определяем закон изменения частоты ФМ сигнала:

? фм (t )= d ? фм(t )/ dt = w 0 +а фм Um u ? cos ? t (19)

Произведение а фм Um u ? =?? m является девиацией частоты фазовой модуляции. Сравнивая девиацию частоты при частотной и фазовой модуляциях можно сделать вывод, что и при ЧМ и при ФМ девиация частоты зависит от коэффициента пропорциональности и амплитуды модулирующего сигнала, но при ФМ девиация частоты также зависит и от частоты модулирующего сигнала.

Временные диаграммы поясняющие процесс формирования ФМ сигнала приведены на рисунке 10.

При разложении математической модели ФМ сигнала на гармонические составляющие получится такой же ряд, как и при частотной модуляции (15), с той лишь разницей, что коэффициенты J k будут зависеть от индекса фазовой модуляции? ? m (J k (? ? m)). Определятся эти коэффициенты будут аналогично, как и при ЧМ, т. е. по функциям Бесселя, с той лишь разницей, что по оси абсцисс необходимо заменить Мчм на? ? m . Поскольку спектр ФМ сигнала строится аналогично спектру ЧМ сигнала, то для него характерны те же выводы что и для ЧМ сигнала (пункт 1.4).

Рисунок 10 - Формирование ФМ сигнала

Ширина спектра ФМ сигнала определяется выражением:

? ? фм =2(1+ ? j m ) ? (20).

Достоинствами фазовой модуляции являются:

  • высокая помехоустойчивость;
  • более эффективное использование мощности передатчика.
  • недостатками фазовой модуляции являются:
  • большая ширина спектра;
  • сравнительная трудность получения модулированных сигналов и их детектирование

Дискретная двоичная модуляция (манипуляция гармонической несущей)

Дискретная двоичная модуляция (манипуляция) — частный случай аналоговой модуляции, при которой в качестве несущего сигнала используется гармоническая несущая, а в качестве модулирующего сигнала используется дискретный, двоичный сигнал.

Различают четыре вида манипуляции:

  • амплитудную манипуляцию (АМн или АМТ);
  • частотную манипуляцию (ЧМн или ЧМТ);
  • фазовую манипуляцию (ФМн или ФМТ);
  • относительно-фазовую манипуляцию (ОФМн или ОФМ).

Временные и спектральные диаграммы модулированных сигналов при различных видах манипуляции представлены на рисунке 11.

При амплитудной манипуляции , также как и при любом другом модулирующем сигнале огибающая S АМн (t) повторяет форму модулирующего сигнала (рисунок 11, в).

При частотной манипуляции используются две частоты? 1 и? 2 . При наличии импульса в модулирующем сигнале (посылке) используется более высокая частота? 2 , при отсутствии импульса (активной паузе) используется более низкая частота w 1 соответствующая немодулированной несущей (рисунок 11, г)). Спектр частотно-манипулированного сигнала S ЧМн (t) имеет две полосы возле частот? 1 и? 2 .

При фазовой манипуляции фаза несущего сигнала изменяется на 180° в момент изменения амплитуды модулирующего сигнала. Если следует серия из нескольких импульсов, то фаза несущего сигнала на этом интервале не изменяется (рисунок 11, д).

Рисунок 11 - Временные и спектральные диаграммы модулированных сигналов различных видов дискретной двоичной модуляции

При относительно-фазовой манипуляции фаза несущего сигнала изменяется на 180° лишь в момент подачи импульса, т. е. при переходе от активной паузы к посылке (0?1) или от посылке к посылке (1?1). При уменьшении амплитуды модулирующего сигнала фаза несущего сигнала не изменяется (рисунок 11, е). Спектры сигналов при ФМн и ОФМн имеют одинаковый вид (рисунок 9, е).

Сравнивая спектры всех модулированных сигналов можно отметить, что наибольшую ширину имеет спектр ЧМн сигнала, наименьшую — АМн, ФМн, ОФМн, но в спектрах ФМн и ОФМн сигналов отсутствует составляющая несущего сигнала.

В виду большей помехоустойчивости наибольшее распространение получили частотная, фазовая и относительно-фазовая манипуляции. Различные их виды используются в телеграфии, при передаче данных, в системах подвижной радиосвязи (телефонной, транкинговой, пейджинговой).

Импульсная модуляция

Импульсная модуляция — это модуляция, при которой в качестве несущего сигнала используется периодическая последовательность импульсов, а в качестве модулирующего может использоваться аналоговый или дискретный сигнал.

Поскольку периодическая последовательность характеризуется четырьмя информационными параметрами (амплитудой, частотой, фазой и длительностью импульса), то различают четыре основных вида импульсной модуляции:

  • амплитудно-импульсная модуляция (АИМ); происходит изменение амплитуды импульсов несущего сигнала;
  • частотно-импульсная модуляция (ЧИМ), происходит изменение частоты следования импульсов несущего сигнала;
  • фазо-импульсная модуляция (ФИМ), происходит изменение фазы импульсов несущего сигнала;
  • широтно-импульсная модуляция (ШИМ), происходит изменение длительности импульсов несущего сигнала.

Временные диаграммы импульсно-модулированных сигналов представлены на рисунке 12.

При АИМ происходит изменение амплитуды несущего сигнала S(t) в соответствии с мгновенными значениями модулирующего сигнала u(t), т. е. огибающая импульсов повторяет форму модулирующего сигнала (рисунок 12, в).

При ШИМ происходит изменение длительности импульсов S(t) в соответствии с мгновенными значениями u(t) (рисунок 12, г).

Рисунок 12 - Временные диаграммы сигналов при импульсной модуляции

При ЧИМ происходит изменение периода, а соответственно и частоты, несущего сигнала S(t) в соответствии с мгновенными значениями u(t) (рисунок 12, д).

При ФИМ происходит смещение импульсов несущего сигнала относительно их тактового (временного) положения в немодулированной несущей (тактовые моменты обозначены на диаграммах точками Т, 2Т, 3Т и т. д.). ФИМ сигнал представлен на рисунке 12, е.

Поскольку при импульсной модуляции переносчиком сообщения является периодическая последовательность импульсов, то спектр импульсно-модулированных сигналов является дискретным и содержит множество спектральных составляющих. Этот спектр представляет собой спектр периодической последовательности импульсов в котором возле каждой гармонической составляющей несущего сигнала находятся составляющие модулирующего сигнала (рисунок 13). Структура боковых полос возле каждой составляющей несущего сигнала зависит от вида модуляции.

Рисунок 13 - Спектр импульсно-модулированного сигнала

Также важной особенностью спектра импульсно-модулированных сигналов является то, что ширина спектра модулированного сигнала, кроме ШИМ, не зависит от модулирующего сигнала. Она полностью определяется длительностью импульса несущего сигнала. Поскольку при ШИМ длительность импульса изменяется и зависит от модулирующего сигнала, то при этом виде модуляции и ширина спектра также зависти от модулирующего сигнала.

Частоту следования импульсов несущего сигнала может быть определена по теореме В. А. Котельникова как f 0 =2Fmax. При этом Fmax это верхняя частота спектра модулирующего сигнала.

Передача импульсно модулированных сигналов по высокочастотным линиям связи невозможна, т. к. спектр этих сигналов содержит низкочастотные составляющий. Поэтому для передачи осуществляют повторную модуляцию . Это модуляция, при которой в качестве модулирующего сигнала используют импульсно-модулированный сигнал, а в качестве несущего гармоническое колебание. При повторной модуляции спектр импульсно-модулированного сигнала переносится в область несущей частоты. Для повторной модуляции может использоваться любой из видов аналоговой модуляции: АМ, ЧС, ФМ. Полученная модуляция обозначается двумя аббревиатурами: первая указывает на вид импульсной модуляции а вторая — на вид аналоговой модуляции, например АИМ-АМ (рисунок 14, а) или ШИМ-ФМ (рисунок 14, б) и т. д.

Рисунок 14 - Временные диаграммы сигналов при импульсной повторной модуляции

Хотя менее и интуитивно понятная, чем амплитудная модуляция, частотная модуляция (ЧМ, англ. FM) по-прежнему является довольно простым способом беспроводной передачи данных.

Мы все, по крайней мере, смутно знакомы с частотной модуляцией - это источник термина «FM радио». Если мы считаем частоту тем, что имеет мгновенное значение, а не как нечто, состоящее из нескольких периодов сигнала, деленных на соответствующий период времени, мы можем непрерывно изменять частоту в соответствии с мгновенной величиной низкочастотного сигнала.

Математика

В первой статье данной главы мы обсудили парадоксальную величину, называемую мгновенной частотой. Если вы считаете этот термин незнакомым или запутанным, вернитесь на эту страницу и прочитайте раздел «Частотная модуляция (ЧМ, англ. FM) и фазовая модуляция (ФМ, англ. PM)». Тем не менее, вы всё еще можете быть немного запутаны, и это понятно: идея мгновенной частоты нарушает основной принцип, согласно которому «частота» указывает, как часто сигнал завершает полный цикл: десять раз в секунду, миллион раз в секунду или сколько бы то ни было раз.

Мы не будем пытаться заниматься каким-либо тщательным или всесторонним рассмотрением мгновенной частоты в качестве математической концепции. (Если вы намерены подробно изучить эту проблему, вот академический документ , который должен помочь.) В контексте FM важно понять, что мгновенная частота естественно вытекает из того, что частота сигнала несущей изменяется непрерывно в ответ на модулирующую волну (т.е. низкочастотный сигнал). Мгновенное значение модулирующего сигнала влияет на частоту в определенный момент, а не на частоту одного или нескольких полных циклов.

На самом деле это верно только для аналоговой частотной модуляции; в цифровой ЧМ один бит соответствует дискретному числу циклов. Это приводит к интересной ситуации, когда более старая технология (аналоговая ЧМ) менее интуитивно понятна, чем более новая технология (цифровая частотная модуляция, также называемая частотной манипуляцией или FSK (Frequency Shift Keying)).

Вам не нужно размышлять над мгновенной частотой, чтобы понимать цифровую частотную модуляцию

Как и в предыдущей статье мы будем обозначать несущую как sin(ω нес t) . У нее уже есть частота (а именно, ω нес), поэтому мы должны использовать термин «дополнительное отклонение частоты » для обозначения частотной составляющей, внесенной процедурой модуляции. Этот термин несколько вводит в заблуждение, поскольку «дополнительное» подразумевает более высокую частоту, тогда как модуляция может приводить к несущей частоте, которая выше или ниже номинальной несущей частоты. Фактически поэтому частотная модуляция (в отличие от амплитудной модуляции) не требует смещенного низкочастотного сигнала: положительные значения низкочастотного сигнала увеличивают частоту несущей, а отрицательные значения низкочастотного сигнала уменьшают частоту несущей. В этих условиях демодуляция не является проблемой, поскольку все значения низкочастотного сигнала соответствуют уникальным частотам.

В любом случае, вернемся к нашему сигналу несущей: sin(ω нес t) . Если мы добавим низкочастотный сигнал (x нч) к величине внутри круглых скобок, мы получим отклонение фазы , линейно пропорциональное низкочастотному сигналу. Но нам нужна частотная модуляция, а не фазовая, поэтому мы хотим, чтобы линейно пропорционально низкочастотному сигналу было отклонение частоты . Из первой статьи данной главы мы знаем, что мы можем получить частоту, взяв производную фазы по времени. Таким образом, если мы хотим, чтобы частота была пропорциональна x нч, мы должны добавить не сам низкочастотный сигнал, а скорее интеграл от низкочастотного сигнала (поскольку взятие производной отменяет интеграл, у нас остается x нч как отклонение частоты).

Единственное, что нам нужно здесь добавить, это индекс модуляции m. В предыдущей статье мы увидели, что индекс модуляции можно использовать для того, чтобы изменения амплитуды несущей были более или менее чувствительны к изменениям амплитуды низкочастотного сигнала. Его функция в FM аналогична: индекс модуляции позволяет нам точно настраивать интенсивность изменения частоты, которое возникает при изменении амплитуды низкочастотного сигнала.

Временна́я область

Давайте посмотрим на несколько сигналов во временной области. Ниже показана наша несущая 10 МГц:

Низкочастотным модулирующим сигналом будет синусоида 1 МГц, показанная ниже:

Частотно-модулированный сигнал генерируется с помощью формулы, приведенной выше. Интеграл от sin(x) равен -cos(x) + C . Константа C здесь не важна, поэтому для вычисления FM сигнала мы можем использовать следующую формулу:

Результат показан ниже (красным показан низкочастотный модулирующий сигнал):

Похоже, что несущая не изменилась, но если присмотреться, пики немного ближе друг к другу, когда низкочастотный модулирующий сигнала приближается к своему максимальному значению. Итак, у нас есть частотная модуляция; но проблема заключается в том, что изменения модулирующего сигнала не создают достаточного изменения частоты несущей. Мы можем легко исправить эту ситуацию, увеличив индекс модуляции. Используем m =4.

Частотная модуляция (m =4)

Теперь мы можем более четко видеть, как частота модулированной несущей непрерывно следует за мгновенным значением амплитуды низкочастотного модулирующего сигнала.

Частотная область

Формы AM и FM сигналов при одинаковых сигнале несущей и низкочастотном модулирующем сигнале выглядят совершенно по-разному. Поэтому интересно обнаружить, что AM и узкополосная FM дают аналогичные изменения в частотной области. (Узкополосная частотная модуляция предусматривает ограниченную полосу модулирующего сигнала и позволяет упростить анализ.) В обоих случая низкочастотный спектр (включая отрицательные частоты) переносится в полосу, которая простирается выше и ниже несущей частоты. В AM спектр самого низкочастотного модулирующего сигнала сдвигается вверх. В FM это спектр интеграла низкочастотного модулирующего сигнала, который появляется в полосе, окружающей несущую частоту.

Для модуляции, показанной выше, с m=1 мы получаем следующий спектр:

Следующий спектр соответствует m=4:

Это очень ясно показывает, что индекс модуляции влияет на частотные составляющие частотно-модулированного сигнала. Спектральный анализ частотной модуляции сложнее, чем для амплитудной модуляции; поэтому для частотно-модулированных сигналов трудно предсказать ширину полосы частот.

Резюме

  • Математическое представление частотной модуляции состоит из синусоидального выражения с интегралом низкочастотного модулирующего сигнала, добавленного к аргументу функции синуса или косинуса.
  • Индекс модуляции может использоваться, чтобы сделать отклонение частоты более чувствительным или менее чувствительным к изменениям амплитуды низкочастотного модулирующего сигнала.
  • Узкополосная частотная модуляция приводит к переносу спектра интеграла низкочастотного модулирующего сигнала в полосу, окружающую несущую частоту.
  • На спектр ЧМ влияет индекс модуляции, а также отношение амплитуды модулирующего сигнала к частоте модулирующего сигнала.

Системы с частотной модуляцией обладают высокой помехоустойчивостью, поэтому их применяют для высокочастотного радиовещания на ультразвуковых волнах, для передачи сигналов звукового сопровождения телевидения, в радиорелейных и спутниковых линиях связи, а также для передачи телеграфных и фототелеграфных сигналов.

Если модуляция производится одним синусоидальным тоном, то выражение для частотномодулированного колебания имеет вид

где – амплитуда высокочастотного колебания;

– значение высокой (несущей) частоты до модуляции;

– частоты модулирующего напряжения;

– индекс частотной модуляции, определяемый из выражения

, (2.5)

где – отклонение высокой частоты при модуляции – девиация частоты.

Мгновенное значение частоты частотномодулированного сигнала будет .

Девиация частоты при модуляции пропорциональна только амплитуде модулирующего напряжения и не зависит от его частоты:

На рисунке 2 приведен график частотномодулированного колебания, соответствующий выражению (2.4). Частота модулирующего колебания определяет скорость изменения мгновенного значения девиации , ( – максимальная девиация).

Рисунок 3 – График частотно-модулированного колебания

В практике радиоизмерений, особенно в условиях эксплуатации, определяется девиация частоты ; индекс частотной модуляции при модуляции одной частотой определяется по формуле (2.5). Для точных измерений частотно-модулированных колебаний при настройке передающих и калибровке измерительных устройств определяется индекс частотной модуляции , а по формуле (2.5) – девиация частоты .

Измерение девиации частоты

Наиболее просто девиацию частоты измерять методом частотного детектора. Сущность его состоит в том, что частотно-модулированные колебания преобразуются в амплитудно-модулированные, а затем детектируются амплитудным детектором, в результате чего получается напряжение, пропорциональное напряжению модулирующей частоты. Это напряжение измеряется пиковым вольтметром, включенным на выходе амплитудного детектора. Как следует из выражения (2.6), шкалу пикового вольтметра можно проградуировать непосредственно в единицах отклонения частоты – килогерцах. Частотно-модулированные колебания преобразуются в колебания низкой частоты частотным детектором (см. рисунок 4), характеристика которого имеет вид S-образной кривой. Детали частотного детектора, в особенности колебательные контуры, должны быть особо высокого качества, так как малейшее изменение их параметров во времени вызывает значительную погрешность измерений.

Рисунок 4 – Схема частотного детектора

Блок-схема прибора для измерения девиации методом частотного детектора приведена на рисунке 4. Прибор представляет собой, по существу, калиброванный высокочастотный приемник частотно-модулированных колебаний с измерительными приборами для непосредственного считывания нужных величин. Модулированный сигнал преобразуется в промежуточную частоту, усиливается, ограничивается и поступает на частотный детектор, выходное напряжение которого пропорционально девиации частоты; результат детектирования проходит через фильтр нижних частот, усиливается и измеряется пиковым вольтметром. Шкала последнего проградуирована в единицах девиации – килогерцах. При помощи внутреннего калибратора проверяются частотный детектор и вся измерительная часть прибора. Погрешность измерения составляет .

Рисунок 5 – Блок-схема измерителя девиации частоты

Задание: определить действительное значение девиации частоты, учитывая погрешность измерения и показания пикового вольтметра, шкала которого проградуирована в единицах девиации – килогерцах.

Например, на РРЛ с частотным уплотнением многоканальное сообщение передается с помощью частотной модуляции передатчика. Для осуществления соединения РРЛ необходимо чтобы девиация частоты была одинакова, т.е для различного числа каналов МККР указывает величину эффективной девиации частоты. При этом измерительный уровень и .

Обычно определяют верхний предел средней мощности многоканального сообщения и рассчитывают эффективную величину девиации частоты.

Таблица 9 – Эффективное значение девиации частоты на канал , кГц

Загрузка одного телефонного канала с уровнем создает эффективную девиацию частоты на один канал

Например, эффективная величина девиации частоты приходящаяся на один канал, при 240>N >100 .

Таблица 10

При сравнении измеренной величины с учетом погрешности с расчетной сделать вывод о соответствии рекомендациям МККР.

Лекция № 12.

Частотная модуляция гармонической несущей .

Частотной модуляцией (ЧМ) называется процесс изменения частоты несущего колебания под воздействием модулирующего сигнала

,

где – коэффициент пропорциональности.

Коэффициент называется девиацией частоты (от лат. deviatio – отклонение) и она равна наибольшему отклонению частоты модулированного сигнала от значения частоты несущей . Изменение частоты ЧМ сигнала показана на рисунке, где отмечена девиация частоты , соответствующая наибольшему отклонению частоты вниз , поскольку .

Девиация частоты является одним из главных параметров частотных модуляторов и может принимать значения от единиц герц до сотен мегагерц в модуляторах различного назначения. Однако всегда необходимо, чтобы выполнялось условие .

Математическая модель ЧМ сигнала выглядит следующим образом

Поскольку входит в это выражение под знаком интеграла, ЧМ часто называют интегральным видом модуляции.

Фазовая модуляция гармонической несущей .

Фазовой модуляцией (ФМ) называется процесс отклонения (сдвига) фазы модулированного сигнала от линейной под воздействием модулирующего сигнала

где – коэффициент пропорциональности, который называется девиацией фазы . Физический смысл этого коэффициента поясняется на рисунке, где изображены модулирующий сигнал и полная фаза ФМ сигнала.

С увеличением сигнала полная фаза растет во времени быстрее, чем по линейному закону. При значениях сигнала происходит спад скорости . Абсолютная величина отклонения (сдвига) фазы от линейной наибольшая, когда достигает экстремальных значений. На рисунке отмечено максимальное отклонение фазы вверх и вниз . Наибольшее отклонение фазы от линейной и является девиацией фазы при ФМ. В примере, показанном на рисунке, . Девиация фазы измеряется в радианах и может принимать значение от единиц до десятков тысяч радиан.

Математическая модель ФМ сигнала выглядит следующим образом

Однотональные сигналы с угловой модуляцией .

При модуляции одним тоном аналитические выражения ЧМ и ФМ сигналов по форме записи имеют совершенно одинаковый вид

где – индекс модуляции . Отличие только в порядке вычисления индекса и фазы модулирующего колебания. При ЧМ индекс модуляции – отношение девиации частоты модулированного сигнала к частоте модулирующего гармонического сигнала , то есть . При ФМ индекс модуляции – величина, равная девиации фазы модулированного сигнала при гармоническом модулирующем сигнале , то есть .

Исходя из всего этого следует, что частотно – модулированный сигнал является в то же время и фазо ­ модулированным. Справедливо и обратное утверждение, поэтому ЧМ и ФМ в общем случае являются разновидностями угловой модуляии гармонической несущей.


При гармоническом модулирующем сигнале временные диаграммы ЧМ и ФМ имеют совершенно одинаковый вид. Отличить их можно, только сравнив изменение мгновенной фазы модулированного сигнала с законом изменения модулирующего колебания.

Спектр при угловой

модуляции .

Сигналы с угловой модуляцией, как и при АМ, могут быть представлены в виде суммы гармонических колебаний. Сравнительно просто это можно сделать при однотональной модуляции. Так как временные диаграммы ЧМ и ФМ сигналов практически одинаковы, то и спектры их будут также совпадать при условии, что . Для построения спектра сигналов с угловой модуляцией используют следующую формулу:

,

где – функция Бесселя -го порядка от аргумента .

В отличии от АМ сигналов, спектр даже для однотональной угловой модуляции является сложным . Этот спектр в себе состоит из: гармонической составляющей с частотой несущей , верхней боковой полосы частот – группы гармонических составляющих с частотами и нижней боковой полосы частот – группы гармонических составляющих с частотами . Число верхних и нижних боковых частот теоретически бесконечно. Боковые гармонические колебания расположены симметрично относительно на расстоянии . Амплитуды всех компонент спектра, в том числе и с частотой , пропорциональны .

Для детального анализа и построения спектральных диаграмм необходимо знание функций Бесселя при различных значениях и . Их можно найти в математических справочниках.

Графики функций Бесселя.

На этом рисунке приведены графики функций Бесселя при , .

Поскольку количество спектральных составляющих спектра угловых модуляций теоретически равно бесконечности, то нужно определиться с тем, сколько их взять для построения спектральной диаграммы. Все зависит от того, составляющие с какими значениями амплитуд отбрасываем. В практике считают, что можно пренебречь всеми спектральными составляющими, номера которых (уровень меньше 5% от уровня несущей). Из этого следует, что ширина спектра сигналов с угловой модуляцией

,

где – частота модулирующего сигнала. Для передачи модулированного сигнала с высокой точностью иногда считают, что надо учитывать спектральные составляющие с уровнем не менее 1% от уровне несущей. Тогда, ширина спектра с угловой модуляцией

Если , то угловая модуляция считается узкополосной и ее ширина спектра соизмерима с шириной спектра амплитудной модуляции. Если же , то угловая модуляция является широкополосной и ее ширина полосы частот примерно равна удвоенной девиации частоты.

Угловые модуляции, особенно широкополосные, обладают большей помехоустойчивостью, чем амплитудная модуляция, поэтому и они находят применение в системах связи для качественной передачи сообщений. Однако при этом значительно расширяется полоса частот модулированного сигнала.

Например, задано аналитическое выражение модулированного сигнала . Спектральная диаграмма в этом случае будет выглядеть следующим образом

Спектральная диаграмма сигналов с однотональной угловой модуляцией при .

Анализ характеристик сигналов с угловой модуляцией мы начнём с рассмотрения однотональной частотной модуляции. Управляющий сигнал в этом случае представляет собой колебание единичной амплитуды (к этому виду всегда можно привести )

, (4.29)

а модулируемым параметром несущего колебания является мгновенная частота. Тогда, подставляя (4.29) в (4.24), получим:

Выполнив операцию интегрирования, приходим к следующему выражению сигнала однотональной частотной модуляции

Отношение

называется индексом частотной модуляции и имеет физический смысл части девиации частоты , приходящуюся на единицу частоты модулирующего сигнала. Так например, если девиация частоты несущего колебания МГц составляет , а частота управляющего сигнала кГц, то индекс частотной модуляции составит . В выражении (4.30) начальная фаза не учитывается как не имеющая принципиального значения.

Временная диаграмма сигнала при однотональной ЧМ представлена на рис. 4.7

Рассмотрение спектральных характеристик ЧМ-сигнала начнём с частного случая малого индекса частотной модуляции . Воспользовавшись соотношением

представим (4.30) в виде

Поскольку , то можно воспользоваться приближёнными представлениями

и выражение (4.31) приобретает вид

Воспользовавшись известным тригонометрическим соотношением

и полагая и , получим:

Это выражение напоминает выражение (4.6) для однотонального АМ – сигнала. Отличие состоит в том, что, если в однотональном АМ – сигнале начальные фазы боковых составляющих одинаковы , то в однотональном ЧМ сигнале при малых индексах частотной модуляции они отличаются на угол , т.е. находятся в противофазе.

Спектральная диаграмма такого сигнала показана на рис. 4.8

В скобках указаны значения начальной фазы боковых составляющих. Очевидно, ширина спектра ЧМ – сигнала при малых индексах частотной модуляции равна

.

Сигналы с частотной модуляцией с малым в практической радиотехнике применяются достаточно редко.

В реальных радиотехнических системах индекс частотной модуляции существенно превышает единицу.

Так например, в современных аналоговых системах мобильной связи, использующих для передачи речевых сообщений сигналы частотной модуляции при верхней частоте речевого сигнала кГц и девиации частоты кГц, индекс , как нетрудно убедиться, достигает значения ~3-4. В системах же радиовещания метрового диапазона индекс частотной модуляции может превышать значения, равного 10. Поэтому рассмотрим спектральные характеристики ЧМ сигналов при произвольных значениях величины .

Возвратимся к выражению (4.32). Известны следующие виды разложения

где – фунция Бесселя первого рода -го порядка.

Подставляя эти выражения в (4.32), после несложных, но довольно громоздких преобразований с использованием уже неоднократно упомянутых выше соотношений произведений косинусов и синусов, получим

(4.36)

где .

Полученное выражение представляет собой разложение однотонального ЧМ – сигнала на гармонические составляющие, т.е. амплитудный спектр. Первое слагаемое этого выражения является спектральной составляющей колебания несущей частоты с амплитудой . Первая сумма выражения (4.35) характеризует боковые составляющие с амплитудами и частотами , т.е. нижнюю боковую полосу, а вторая сумма – боковые составляющие с амплитудами и частотами , т.е. верхнюю боковую полосу спектра.

Спектральная диаграмма ЧМ – сигнала при произвольном представлена на рис. 4.9.

Проанализируем характер амплитудного спектра ЧМ – сигнала. В первую очередь отметим, что спектр является симметричным относительно частоты несущего колебания и теоретически является бесконечным.

Составляющие боковых боковых полос расположены на расстоянии Ω друг от друга, а их амплитуды зависят от индекса частотной модуляции. И наконец, у спектральных составляющих нижней и верхней боковых частот с чётными индексами начальные фазы совпадают, а у спектральных составляющих с нечётными индексами отличаются на угол .

В таблице 4.1 приведены значения функции Бесселя для различных i и . Обратим внимание на составляющую несущего колебания . Амплитуда этой составляющей равна . Из таблицы 4.1 следует, что при амплитуда , т.е. спектральная составляющая несущего колебания в спектре ЧМ – сигнала отсутствует. Но это не означает отсутствия несущего колебания в ЧМ – сигнале (4.30). Просто энергия несущего колебания перераспределяется между составляющими боковых полос.

Таблица 4.1

Как уже подчёркивалось выше спектр ЧМ – сигнала теоретически является бесконечным. На практике же полоса пропускания радиотехнических устройств всегда ограничена. Оценим практическую ширину спектра, при котором воспроизведение ЧМ – сигнала можно считать неискажённым.

Средняя мощность ЧМ – сигнала определяется как сумма средних мощностей спектральных составляющих

Проведённые расчёты показали, что около 99% энергии ЧМ – сигнала сосредоточено в частотных составляющих с номерами . А это означает, что частотными составляющими с номерами можно пренебречь. Тогда практическая ширина спектра при однотональной ЧМ с учётом его симметрии относительно

а при больших значения

Т.е. равна удвоенной девиации частоты.

Таким образом, ширина спектра ЧМ – сигнала приблизительно в раз больше ширины спектра АМ – сигнала. Вместе с тем, для передачи информации используется вся энергия сигнала. В этом состоит преимущества сигналов частотной модуляции над сигналами амплитудной модуляции.

Похожие публикации