Четыре поколения эвм. Лекция: поколения эвм, основные характеристики эвм разных поколений

Которыми мы привыкли пользоваться, предшествовала целая эволюция в развитии вычислительной техники. Согласно распространенной теории, развитие индустрии ЭВМ шло на протяжении нескольких отдельных поколений.

Современные эксперты склонны считать, что их шесть. Пять из них уже состоялись, еще одно - на подходе. Что именно под термином "поколение ЭВМ" понимают IT-специалисты? Каковы принципиальные различия между отдельными периодами развития вычислительной техники?

Предыстория появления ЭВМ

История развития ЭВМ 5 поколений интересна и увлекательна. Но прежде чем изучить ее, полезно будет узнать факты, касающиеся того, какие технологические решения предшествовали разработке ЭВМ.

Люди всегда стремились к совершенствованию процедур, связанных с подсчетами, вычислениями. Историками установлено, что инструменты для работы с цифрами, имеющие механическую природу, были изобретены еще в Древнем Египте и других государствах античности. В средние века европейские изобретатели могли конструировать механизмы, с помощью которых, в частности, могла вычисляться периодичность лунных приливов.

Прообразом современных ЭВМ некоторые эксперты считают изобретенную в начале 19 века обладавшую функциями программирования вычислений. В конце 19-начале 20 века появились устройства, в которых стала использоваться электроника. В основном они задействовались в индустрии телефонной и радиосвязи.

В 1915 году переехавший в США немецкий эмигрант основал компанию IBM, впоследствии ставшую одним из самых узнаваемых брендов IT-индустрии. В числе самых сенсационных изобретений Германа Холлерита стали перфокарты, в течение десятилетий выполнявшие функцию основного при пользовании вычислительной техникой. К концу 30-х годов появились технологии, позволившие говорить о начале компьютерной эпохи в развитии человеческой цивилизации. Появились первые ЭВМ, который впоследствии стали классифицироваться как принадлежащие к "первому поколению".

Признаки ЭВМ

Ключевым принципиальным критерием отнесения вычислительного устройства к категории ЭВМ, или компьютера, эксперты называют программируемость. Этим соответствующего типа машины, в частности, отличаются от калькуляторов, какими бы мощными последние ни являлись. Даже если речь идет о программировании на очень низком уровне, когда используются "нули и единицы" - критерий в силе. Соответственно, как только были изобретены машины, быть может, по внешним признакам сильно схожие с калькуляторами, но которые можно было программировать - их стали именовать компьютерами.

Под термином "поколение ЭВМ" понимают, как правило, принадлежность компьютера к конкретной технологической формации. То есть, той базе аппаратных решений, на основе которой ЭВМ работает. При этом, исходя из критериев, предлагаемых IT-экспертами, деление компьютеров на поколения далеко не условное (хотя, конечно, есть и переходные формы компьютеров, которые сложно однозначно отнести к какой-либо конкретной категории).

Завершив теоретический экскурс, мы можем начать изучать поколения ЭВМ. Таблица, что ниже, поможет нам ориентироваться в периодизации каждого.

Поколение

Вторая половина 70 - начало 90-х

90-е - наше время

В разработке

Далее мы рассмотрим технологические особенности компьютеров для каждой категории. Нами будет определена характеристика поколений ЭВМ. Таблица, что мы сейчас составили, будет дополнена другими, в которых будут соотнесены соответствующие категории и технологические параметры.

Отметим важный нюанс - нижеследующие рассуждения касаются, главным образом, эволюции компьютеров, которые сегодня принято относить к персональным. Есть совершенно иные классы ЭВМ - военные, промышленные. Есть так называемые "суперкомпьютеры". Их появление и развитие - отдельная тема.

Первые ЭВМ

В 1938 году германский инженер Конрад Цузе конструирует устройство, названное Z1, а в 42-м выпускает его усовершенствованную версию - Z2. В 1943 году свою изобретают англичане и называют ее "Колосс". Некоторые эксперты склонны считать английскую и немецкие машины первыми ЭВМ. В 1944-м на базе разведданных из Германии вычислительную машину создают также и американцы. Разработанная в США ЭВМ получила название "Марк I".

В 1946 году американские инженеры делают небольшую революцию в области конструирования вычислительной техники, создав ламповый компьютер ЭНИАК, в 1000 раз более производительный, чем "Марк I". Следующей известной американской разработкой стала созданная в 1951 году ЭВМ, названная УНИАК. Ее основная особенность в том, что она первой из ЭВМ стала использоваться как коммерческий продукт.

К тому моменту, к слову, свой компьютер уже успели изобрести советские инженеры, работающие в Академии наук Украины. Наша разработка получила название МЭСМ. Ее производительность, по оценке экспертов, была самой высокой среди ЭВМ, собранных в Европе.

Технологические особенности первого поколения ЭВМ

Собственно, исходя из каких критерий определяется первое поколение развития ЭВМ? Таковым IT-специалисты считают, прежде всего, компонентную базу в виде вакуумных ламп. Машины первого поколения к тому же обладали рядом характерных внешних признаков - огромный размер, очень большое энергопотребление.

Вычислительная их мощность также была относительно скромна, она составляла несколько тысяч герц. Вместе с тем ЭВМ первого поколения содержали многое, что есть в современных компьютерах. В частности, это машинный код, позволяющий программировать команды, а также запись данных в память (с помощью перфокарт и электростатических трубок).

ЭВМ первого поколения требовали высочайшей квалификации человека, их использующего. Требовалось не только владение профильными навыками (выражающимися в работе с перфокартами, знании машинного кода и т.д.), но, как правило, также и инженерные знания в области электроники.

В ЭВМ первого поколения, как мы уже сказали, уже была Правда, ее объем был исключительно скромным, он выражался в сотнях, в лучшем случае - в тысячах байт. Первые модули ОЗУ для ЭВМ с трудом можно было классифицировать как электронный компонент. Они представляли собой наполненные ртутью емкости в виде трубок. Кристаллы памяти фиксировались на определенных их участках, и тем самым данные сохранялись. Однако достаточно скоро после изобретения первых ЭВМ появилась более совершенная память на базе ферритовых сердечников.

Второе поколение ЭВМ

Какова дальнейшая история развития ЭВМ? Поколения ЭВМ стали развиваться далее. В 60-х годах получают распространение компьютеры, использующие уже не только вакуумные лампы, но также и полупроводники. Значительно повысилась тактовая частота микросхем - обычным делом считался показатель в 100 тыс. герц и выше. Появились первые магнитные диски как альтернатива перфокартам. В 1964 году компания IBM выпустила уникальный продукт - отдельный компьютерный монитор с достаточно приличными характеристиками - 12-дюймовой диагональю, разрешением 1024 на 1024 точек, а также частотой развертки в 40 Гц.

Поколение номер три

Чем примечательно третье поколение ЭВМ? Прежде всего, переводом компьютеров с ламп и полупроводников на интегральные схемы, которые, не считая ЭВМ, стали использоваться во множестве других электронных устройств.

Впервые возможности интегральных схем были показаны миру стараниями инженера Джека Килби и компании Texas Instruments в 1959 году. Джек создал небольшую конструкцию, выполненную на пластинке из металла германия, которая, как предполагалось, заменит собой сложные полупроводниковые конструкции. В свою очередь, компания Texas Instruments создала компьютер, собранный на базе подобных пластинок. Самое примечательное, что он был в 150 раз меньше, чем аналогичной производительности полупроводниковая ЭВМ. Технология интегральных схем получила дальнейшее развитие. Большую роль в этом сыграли исследования Роберта Нойса.

Эти аппаратные компоненты позволили, прежде всего, значительно уменьшить габариты ЭВМ. В результате произошло существенное повышение производительности компьютеров. Третье поколение ЭВМ характеризовалось выпуском ЭВМ с тактовой частотой, выражаемой уже в мегагерцах. Уменьшилось также и энергопотребление компьютеров.

Стали более совершенными технологии записи данных и обработки их в модулях ОЗУ. Что касается оперативной памяти, ферритовые элементы стали более емкими, технологически совершенными. Появились сначала прототипы, а затем и первые версии дискет, используемые как внешний носитель данных. В архитектуре ПК появилась кэш-память.Стандартной средой взаимодействия пользователя и компьютера стало окно дисплея.

Происходило дальнейшее совершенствование программных компонентов. Появились полноценные операционные системы, стало разрабатываться самое разнообразное были внедрены концепции многозадачности в работу ЭВМ. В рамках ЭВМ третьего поколения появляются такие программы, как а также ПО для автоматизации проектных работ. Появляется все больше языков программирования и сред, в рамках которых осуществляется создание ПО.

Особенности четвертого поколения

Четвертое поколение ЭВМ характеризуется появлением относящихся к классу больших, а также так называемых сверхбольших. В архитектуре ПК появилась ведущая микросхема - процессор. ЭВМ по своей конфигурации стали ближе к рядовым гражданам. Пользование ими стало возможным при минимальной квалификационной подготовке, в то время как работа с ЭВМ предыдущих поколений требовала профессиональных навыков. Модули ОЗУ стали выпускаться не на основе ферритовых элементов, а на базе CMOS-микросхем. К четвертому поколению ЭВМ принято относить и Apple, собранный в 1976 году Стивом Джобсом и Стефаном Возняком. Многие IT-эксперты считают, что Apple - первый в мире персональный компьютер.

Четвертое поколение ЭВМ также совпало с началом популяризации Интернета. В этот же период появился самый известный сегодня бренд софт-индустрии - Microsoft. Возникли первые версии операционных систем, которые мы знаем сегодня - Windows, MacOS. Компьютеры стали активно распространяться по всему миру.

Пятое поколение

Период расцвета четвертого поколения компьютеров - середина-конец 80-х годов. Но уже в начале 90-х на рынке IT-технологий начали происходить процессы, позволившие начать отсчет новому поколению ЭВМ. Речь идет о значительных шагах вперед, прежде всего, в инженерно-технических наработках, связанных с процессорами. Появились микросхемы с архитектурой, относимой к типу параллельно-векторной.

Пятое поколение ЭВМ - это невероятные темпы роста производительности машин из года в год. Если в начале 90-х тактовая частота микропроцессоров в несколько десятков мегагерц считалась хорошим показателем, то к началу 2000-х никто не удивлялся гигагерцам. Компьютеры, которыми мы пользуемся сейчас, как полагают IT-эксперты, - это также пятое поколение ЭВМ. То есть, технологический задел начала 90-х актуален до сих пор.

ПК, относящиеся к пятому поколению, стали не просто вычислительными машинами, а полноценными мультимедийными инструментами. На них стало возможно монтировать фильмы, работать с изображениями, записывать и обрабатывать звук, создавать инженерные проекты, запускать реалистичные 3D-игры.

Характеристики шестого поколения

В обозримом будущем, считают аналитики, мы вправе ожидать, что появится 6 поколение ЭВМ. Оно будет характеризоваться использованием нейронных элементов в архитектуре микросхем, использованием процессоров в рамках распределенной сети.

Производительность компьютеров в следующем поколении будет измеряться, вероятно, уже не в гигагерцах, а в принципиально иного типа единицах исчисления.

Сравнение характеристик

Мы изучили поколения ЭВМ. Таблица ниже позволит нам ориентироваться в соотнесении компьютеров, принадлежащих к той или иной категории, и технологической базы, на которой основано их функционирование. Зависимости следующие:

Поколение

Технологическая база

Вакуумные лампы

Полупроводники

Интегральные схемы

Большие и сверхбольшие схемы

Параллельно-векторные технологии

Нейронные принципы

Полезной может оказаться также визуализация соотнесения производительности и конкретного поколения ЭВМ. Таблица, которую мы сейчас составим, отразит и эту закономерность. Берем за основу такой параметр как тактовая частота.

Поколение

Тактовая частота выполнения операций

Несколько килогерц

Сотни КГц

Мегагерцы

Десятки МГц

Сотни МГц, Гигагерцы

Критерии измерения прорабатываются

Таким образом, мы визуализировали ключевые технологические особенности для каждого поколения ЭВМ. Таблица, любая из представленных нами, поможет нам соотносить соответствующие параметры и конкретную категорию компьютеров применительно к тому или иному этапу развития вычислительной техники.

В соответствии с элементной базой и уровнем развития программных средств выделяют четыре реальных поколения ЭВМ, краткая характеристика которых приведена в таблице:

Параметры сравнения

Поколения ЭВМ

четвертое

Период времени

Элементная база (для УУ, АЛУ)

Электронные (или электрические) лампы

Полупроводники (транзисторы)

Интегральные схемы

Большие интегральные схемы (БИС)

Основной тип ЭВМ

Малые (мини)

Основные устройства ввода

Пульт, перфокарточный, перфоленточный ввод

Алфавитно-цифровой дисплей, клавиатура

Цветной графический дисплей, сканер, клавиатура

Основные устройства вывода

Алфавитно-цифровое печатающее устройство (АЦПУ), перфоленточный вывод

Графопостроитель, принтер

Внешняя память

Магнитные ленты, барабаны, перфоленты, перфокарты

Перфоленты, магнитный диск

Магнитные и оптические диски

Ключевые решения в ПО

Универсальные языки программирования, трансляторы

Пакетные операционные системы, оптимизирующие трансляторы

Интерактивные операционные системы, структурированные языки программирования

Дружественность ПО, сетевые операционные системы

Режим работы ЭВМ

Однопрограммный

Пакетный

Разделения времени

Персональная работа и сетевая обработка данных

Цель использования ЭВМ

Научно-технические расчеты

Технические и экономические расчеты

Управление и экономические расчеты

Телекоммуникации, информационное обслуживание

Эволюция использования компьютеров. Проект ЭВМ пятого поколения

Рассмотренная технология проектирования программ реализует последовательное преобразование целого ряда сигналов, т.е. их кодирование:

Эта схема имеет два недостатка:

  1. процесс подготовки задачи к решению на ЭВМ несоизмеримо продолжительнее самого решения: многие месяцы подготовки задачи несопоставимы с несколькими минутами ее решения компьютером;
  1. цепочка «заказчик – ЭВМ» работает в общем случае как неисправный телефон в силу того, что в процессе общения участники этой цепочки используют несколько языков (естественный, математический, язык графических символов, язык программирования и т.д.), часть из которых неоднозначна по смыслу высказываний. Из-за этого результаты решения задачи требуется согласовывать с заказчиком и, возможно, вносить в программу изменения. Это также удлиняет процесс подготовки программного продукта.

Таким образом, продолжительность подготовки задачи к ее автоматизированному решению - одна из причин совершенствования традиционной технологии этой процедуры.

Вторая причина связана с объективной эволюцией использования компьютеров, которая показана в таблице:

Параметр

Эволюция использования компьютеров

с 90-х г.г. 20-го века

Критерий

эффективности использования ЭВМ

Машинные ресурсы

Машинные ресурсы

Человеческие ресурсы: трудоемкость разработки и сопровождения программ

Трудоемкость формализации профессиональных знаний

Полнота и скорость доступа к информации

Расположение пользователя

Машинный зал

Отдельное помещение

Терминальный зал

Рабочий стол

Произвольное мобильное

Тип пользователя

Инженер-

программист

Профессиональный программист

Программист -пользователь

Пользователь с общей компьютерной подготовкой

Слабо обученный пользователь

Тип диалога

Работа за пультом

Обмен перфоносителями и машинными программами

Интерактивный (клавиатура и экран)

Интерактивный по жесткому меню

Интерактивный, графический

интерфейс

Как видно из таблицы, компьютер «приближается» к конечному пользователю, который не является хорошо подготовленным в области общения с компьютером и испытывает значительные затруднения в решении своих прикладных задач с использованием компьютера. В этой связи возникает проблема организации нового типа взаимодействия конечного пользователя и компьютера. Эта проблематика получила выражение в проекте ЭВМ пятого поколения, который был опубликован в начале 80-х годов 20-го столетия в Японии.

Основная идея этого проекта – сделать общение конечного пользователя с компьютером максимально простым, подобным общению с любым бытовым прибором. Для решения поставленной задачи предлагались следующие направления:

  1. разработка простого интерфейса, позволяющего конечному пользователю вести диалог с компьютером для решения своих задач. Подобный интерфейс может быть организован двумя способами: естественно-языковым и графическим. Поддержка естественно-языкового диалога – очень сложная и не решенная пока задача. Реальным является создание графического интерфейса, что и сделано в ряде программных продуктов, например, в ОС Windows’xx. Этот интерфейс обладает наглядностью, не требует специальных знаний. Однако разработка доступных интерфейсов решает проблему только наполовину – позволяет конечному пользователю обращаться к заранее спроектированному программному обеспечению, не принимая участие в его разработке;
  1. привлечение конечного пользователя к проектированию программных продуктов. Это направление позволило бы включить заказчика непосредственно в процесс создания программ, что в конечном итоге сократило бы время разработки программных продуктов и, возможно, повысило бы их качество. Подобная технология связана с автоформализацией профессиональных знаний конечного пользователя и предполагает два этапа проектирования программных продуктов:
  • программистом создается «пустая» универсальная программная оболочка, способная наполняться конкретными знаниями и с их использованием решать практические задачи. Например, эту оболочку можно было бы заполнить правилами составления квартальных и иных балансов предприятий, и тогда она могла бы решать задачи бухгалтерского учета. Либо можно было внести туда правила зачисления абитуриентов, которые изложены ранее и использованы в примерах. В этом случае мы бы получили программный продукт, аналогичный тому, что проектировали выше, и т.д.;
  • конечный пользователь заполняет созданную программистом программную оболочку, вводя в нее знания, носителем которых (в некоторой предметной области) он является. Здесь может использоваться понятный интерфейс, который обсуждался выше. После этого программный продукт готов к эксплуатации.

Таким образом, предлагаемая в проекте ЭВМ пятого поколения технология подготовки прикладных задач к решению на компьютере включает два этапа и представлена на рисунке:

Программист

а) программист создает пустую программную оболочку;

Заказчик

б) заказчик (конечный пользователь) наполняет оболочку знаниями

Наполненная знаниями конечного пользователя программная оболочка готова к решению тех прикладных задач, правила решения которых внес в нее конечный пользователь. Таким образом, начинается эксплуатация программного продукта.

Предлагаемая технология имеет много серьезных проблем, связанных с представлением и манипулированием знаниями. Тем не менее, с ней связывают прорыв в области проектирования прикладных программных продуктов.

Введение

1. Первое поколение ЭВМ 1950-1960-е годы

2. Второе поколение ЭВМ: 1960-1970-е годы

3. Третье поколение ЭВМ: 1970-1980-е годы

4. Четвертое поколение ЭВМ: 1980-1990-е годы

5. Пятое поколение ЭВМ: 1990-настоящее время

Заключение

Введение

Начиная с 1950 года, каждые 7-10 лет кардинально обновлялись конструктивно-технологические и программно-алгоритмические принципы построения и использования ЭВМ. В связи с этим правомерно говорить о поколениях вычислительных машин. Условно каждому поколению можно отвести 10 лет.

ЭВМ проделали большой эволюционный путь в смысле элементной базы (от ламп к микропроцессорам) а также в смысле появления новых возможностей, расширения области применения и характера их использования.

Деление ЭВМ на поколения - весьма условная, нестрогая классификация вычислительных систем по степени развития аппаратных и программных средств, а также способов общения с ЭВМ.

К первому поколению ЭВМ относятся машины, созданные на рубеже 50-х годов: в схемах использовались электронные лампы. Команд было мало, управление - простым, а показатели объема оперативной памяти и быстродействия - низкими. Быстродействие порядка 10-20 тысяч операций в секунду. Для ввода и вывода использовались печатающие устройства, магнитные ленты, перфокарты и перфоленты.

Ко второму поколению ЭВМ относятся те машины, которые были сконструированы в 1955-65 гг. В них использовались как электронные лампы, так и транзисторы. Оперативная память была построена на магнитных сердечниках. В это время появились магнитные барабаны и первые магнитные диски. Появились так называемые языки высокого уровня, средства которых допускают описание всей последовательности вычислений в наглядном, легко воспринимаемом виде. Появился большой набор библиотечных программ для решения различных математических задач. Машинам второго поколения была свойственна программная несовместимость, которая затрудняла организацию крупных информационных систем, поэтому в середине 60х годов наметился переход к созданию ЭВМ, программно совместимых и построенных на микроэлектронной технологической базе.

Третье поколение ЭВМ. Это машины, создаваемые после 60х годов, обладающих единой архитектурой, т.е. программно совместимых. Появились возможности мультипрограммирования, т.е. одновременного выполнения нескольких программ. В ЭВМ третьего поколения применялись интегральные схемы.

Четвертое поколение ЭВМ. Это нынешнее поколение ЭВМ, разработанных после 1970 г. Машины 4го поколения проектировались в расчёте на эффективное использование современных высокоуровневых языков и упрощение процесса программирования для конечного пользователя.

В аппаратурном отношении для них характерно использование больших интегральных схем как элементной базы и наличие быстродействующих запоминающих устройств с произвольной выборкой, объемом несколько Мбайт.

Машины 4-го поколения- многопроцессорные, многомашинные комплексы, работающие на внеш. память и общее поле внеш. устройств. Быстродействие достигает десятков миллионов операций в сек, память - нескольких млн. слов.

Переход к пятому поколению ЭВМ уже начался. Он заключается в качественном переходе от обработки данных к обработке знаний и в повышении основных параметров ЭВМ. Основной упор будет сделан на "интеллектуальность".

На сегодняшний день реальный «интеллект», демонстрируемый самыми сложными нейронными сетями, находится ниже уровня дождевого червя, однако, как бы ни были ограничены возможности нейронных сетей сегодня, множество революционных открытий, могут быть не за горами.

1. Первое поколение ЭВМ 1950-1960-е годы

Логические схемы создавались на дискретных радиодеталях и электронных вакуумных лампах с нитью накала. В оперативных запоминающих устройствах использовались магнитные барабаны, акустические ультразвуковые ртутные и электромагнитные линии задержки, электронно-лучевые трубки (ЭЛТ). В качестве внешних запоминающих устройств применялись накопители на магнитных лентах, перфокартах, перфолентах и штекерные коммутаторы.

Программирование работы ЭВМ этого поколения выполнялось в двоичной системе счисления на машинном языке, то есть программы были жестко ориентированы на конкретную модель машины и "умирали" вместе с этими моделями.

В середине 1950-х годов появились машинно-ориентированные языки типа языков символического кодирования (ЯСК), позволявшие вместо двоичной записи команд и адресов использовать их сокращенную словесную (буквенную) запись и десятичные числа. В 1956 году был создан первый язык программирования высокого уровня для математических задач - язык Фортран, а в 1958 году - универсальный язык программирования Алгол.

ЭВМ, начиная от UNIVAC и заканчивая БЭСМ-2 и первыми моделями ЭВМ "Минск" и "Урал", относятся к первому поколению вычислительных машин.

2. Второе поколение ЭВМ: 1960-1970-е годы

Логические схемы строились на дискретных полупроводниковых и магнитных элементах (диоды, биполярные транзисторы, тороидальные ферритовые микротрансформаторы). В качестве конструктивно-технологической основы использовались схемы с печатным монтажом (платы из фольгированного гетинакса). Широко стал использоваться блочный принцип конструирования машин, который позволяет подключать к основным устройствам большое число разнообразных внешних устройств, что обеспечивает большую гибкость использования компьютеров. Тактовые частоты работы электронных схем повысились до сотен килогерц.

Стали применяться внешние накопители на жестких магнитных дисках1 и на флоппи-дисках - промежуточный уровень памяти между накопителями на магнитных лентах и оперативной памятью.

В 1964 году появился первый монитор для компьютеров - IBM 2250. Это был монохромный дисплей с экраном 12 х 12 дюймов и разрешением 1024 х 1024 пикселов. Он имел частоту кадровой развертки 40 Гц.

Создаваемые на базе компьютеров системы управления потребовали от ЭВМ более высокой производительности, а главное - надежности. В компьютерах стали широко использоваться коды с обнаружением и исправлением ошибок, встроенные схемы контроля.

В машинах второго поколения были впервые реализованы режимы пакетной обработки и телеобработки информации.

Первой ЭВМ, в которой частично использовались полупроводниковые приборы вместо электронных ламп, была машина SEAC (Standarts Eastern Automatic Computer), созданная в 1951 году.

В начале 60-х годов полупроводниковые машины стали производиться и в СССР.

3. Третье поколение ЭВМ: 1970-1980-е годы

В 1958 году Роберт Нойс изобрел малую кремниевую интегральную схему, в которой на небольшой площади можно было размещать десятки транзисторов. Эти схемы позже стали называться схемами с малой степенью интеграции (Small Scale Integrated circuits - SSI). А уже в конце 60-х годов интегральные схемы стали применяться в компьютерах.

Логические схемы ЭВМ 3-го поколения уже полностью строились на малых интегральных схемах. Тактовые частоты работы электронных схем повысились до единиц мегагерц. Снизились напряжения питания (единицы вольт) и потребляемая машиной мощность. Существенно повысились надежность и быстродействие ЭВМ.

В оперативных запоминающих устройствах использовались миниатюрнее ферритовые сердечники, ферритовые пластины и магнитные пленки с прямоугольной петлей гистерезиса. В качестве внешних запоминающих устройств широко стали использоваться дисковые накопители.

Появились еще два уровня запоминающих устройств: сверхоперативные запоминающие устройства на триггерных регистрах, имеющие огромное быстродействие, но небольшую емкость (десятки чисел), и быстродействующая кэш-память.

Начиная с момента широкого использования интегральных схем в компьютерах, технологический прогресс в вычислительных машинах можно наблюдать, используя широко известный закон Мура. Один из основателей компании Intel Гордон Мур в 1965 году открыл закон, согласно которому количество транзисторов в одной микросхеме удваивается через каждые 1,5 года.

Ввиду существенного усложнения как аппаратной, так и логической структуры ЭВМ 3-го поколения часто стали называть системами.

Так, первыми ЭВМ этого поколения стали модели систем IBM (ряд моделей IBM 360) и PDP (PDP 1). В Советском Союзе в содружестве со странами Совета Экономической Взаимопомощи (Польша, Венгрия, Болгария, ГДР и др1.) стали выпускаться модели единой системы (ЕС) и системы малых (СМ) ЭВМ.

В вычислительных машинах третьего поколения значительное внимание уделяется уменьшению трудоемкости программирования, эффективности исполнения программ в машинах и улучшению общения оператора с машиной. Это обеспечивается мощными операционными системами, развитой системой автоматизации программирования, эффективными системами прерывания программ, режимами работы с разделением машинного времени, режимами работы в реальном времени, мультипрограммными режимами работы и новыми интерактивными режимами общения. Появилось и эффективное видеотерминальное устройство общения оператора с машиной - видеомонитор, или дисплей.

Большое внимание уделено повышению надежности и достоверности функционирования ЭВМ и облегчению их технического обслуживания. Достоверность и надежность обеспечиваются повсеместным использованием кодов с автоматическим обнаружением и исправлением ошибок (корректирующие коды Хеммин-га и циклические коды).

Модульная организация вычислительных машин и модульное построение их операционных систем создали широкие возможности для изменения конфигурации вычислительных систем. В связи с этим возникло новое понятие "архитектура" вычислительной системы, определяющее логическую организацию этой системы с точки зрения пользователя и программиста.

4. Четвертое поколение ЭВМ: 1980-1990-е годы

Революционным событием в развитии компьютерных технологий третьего поколения машин было создание больших и сверхбольших интегральных схем (Large Scale Integration - LSI и Very Large Scale Integration - VLSI), микропроцессора (1969 г.) и персонального компьютера. Начиная с 1980 года практически все ЭВМ стали создаваться на основе микропроцессоров. Самым востребованным компьютером стал персональный.

Учебник состоит из двух разделов: теоретического и практического. В теоретической части учебника изложены основы современной информатики как комплексной научно-технической дисциплины, включающей изучение структуры и общих свойств информации и информационных процессов, общих принципов построения вычислительных устройств, рассмотрены вопросы организации и функционирования информационно-вычислительных сетей, компьютерной безопасности, представлены ключевые понятия алгоритмизации и программирования, баз данных и СУБД. Для контроля полученных теоретических знаний предлагаются вопросы для самопроверки и тесты. Практическая часть освещает алгоритмы основных действий при работе с текстовым процессором Microsoft Word, табличным редактором Microsoft Excel, программой для создания презентаций Microsoft Power Point, программами-архиваторами и антивирусными программами. В качестве закрепления пройденного практического курса в конце каждого раздела предлагается выполнить самостоятельную работу.

Книга:

В соответствии с элементной базой и уровнем развития программных средств выделяют четыре реальных поколения ЭВМ, краткая характеристика которых приведена в таблице 1.

Таблица 1



ЭВМ первого поколения обладали небольшим быстродействием в несколько десятков тыс. оп./сек. В качестве внутренней памяти применялись ферритовые сердечники.

Основной недостаток этих ЭВМ – рассогласование быстродействия внутренней памяти и АЛУ и УУ за счет различной элементной базы. Общее быстродействие определялось более медленным компонентом – внутренней памятью – и снижало общий эффект. Уже в ЭВМ первого поколения делались попытки ликвидировать этот недостаток путем асинхронизации работы устройств и введения буферизации вывода, когда передаваемая информация «сбрасывается» в буфер, освобождая устройство для дальнейшей работы (принцип автономии). Таким образом, для работы устройств ввода-вывода использовалась собственная память.

Существенным функциональным ограничением ЭВМ первого поколения являлась ориентация на выполнение арифметических операций. При попытках приспособления для задач анализа они оказывались неэффективными.

Языков программирования как таковых еще не было, и для кодирования своих алгоритмов программисты использовали машинные команды или ассемблеры. Это усложняло и затягивало процесс программирования. К концу 50-х годов средства программирования претерпевают принципиальные изменения: осуществляется переход к автоматизации программирования с помощью универсальных языков и библиотек стандартных программ. Использование универсальных языков повлекло возникновение трансляторов.

Программы выполнялись позадачно, т. е. оператору надо было следить за ходом решения задачи и при достижении конца самому инициировать выполнение следующей задачи.

Начало современной эры использования ЭВМ в нашей стране относят к 1950 году, когда в институте электротехники АН УССР под руководством С.А. Лебедева была создана первая отечественная ЭВМ под названием МЭСМ – Малая Электронная Счетная Машина. В течение первого этапа развития средств вычислительной техники в нашей стране создан ряд ЭВМ: БЭСМ, Стрела, Урал, М-2.

Второе поколение ЭВМ – это переход к транзисторной элементной базе, появление первых мини-ЭВМ.

Получает дальнейшее развитие принцип автономии – он реализуется уже на уровне отдельных устройств, что выражается в их модульной структуре. Устройства ввода-вывода снабжаются собственными УУ (называемыми контроллерами), что позволило освободить центральное УУ от управления операциями ввода-вывода.

Совершенствование и удешевление ЭВМ привели к снижению удельной стоимости машинного времени и вычислительных ресурсов в общей стоимости автоматизированного решения задачи обработки данных, в то же время расходы на разработку программ (т. е. программирование) почти не снижались, а в ряде случаев имели тенденции к росту. Таким образом, намечалась тенденция к эффективному программированию, которая начала реализовываться во втором поколении ЭВМ и получает развитие до настоящего времени.

Начинается разработка на базе библиотек стандартных программ интегрированных систем, обладающих свойством переносимости, т. е. функционирования на ЭВМ разных марок. Наиболее часто используемые программные средства выделяются в ППП для решения задач определенного класса.

Совершенствуется технология выполнения программ на ЭВМ: создаются специальные программные средства – системное ПО.

Цель создания системного ПО – ускорение и упрощение перехода процессором от одной задачи к другой. Появились первые системы пакетной обработки, которые просто автоматизировали запуск одной программы за другой и тем самым увеличивали коэффициент загрузки процессора. Системы пакетной обработки явились прообразом современных операционных систем, они стали первыми системными программами, предназначенными для управления вычислительным процессом. В ходе реализации систем пакетной обработки был разработан формализованный язык управления заданиями, с помощью которого программист сообщал системе и оператору, какую работу он хочет выполнить на вычислительной машине. Совокупность нескольких заданий, как правило, в виде колоды перфокарт, получила название пакета заданий. Этот элемент жив до сих пор: так называемые пакетные (или командные) файлы MS DOS есть не что иное, как пакеты заданий (расширение в их имени bat является сокращением от английского слова batch, что означает пакет).

К отечественным ЭВМ второго поколения относятся «Проминь», «Минск», «Раздан», «Мир».

В 70-х годах возникают и развиваются ЭВМ третьего поколения. В нашей стране это ЕС ЭВМ, АСВТ, СМ ЭВМ. Данный этап – переход к интегральной элементной базе и создание многомашинных систем, поскольку значительного увеличения быстродействия на базе одной ЭВМ достичь уже не удавалось. Поэтому ЭВМ этого поколения создавались на основе принципа унификации, что позволило комплексировать произвольные вычислительные комплексы в различных сферах деятельности.

Расширение функциональных возможностей ЭВМ увеличило сферу их применения, что вызвало рост объема обрабатываемой информации и поставило задачу хранения данных в специальных базах данных и их ведения. Так появились первые системы управления базами данных – СУБД.

Изменились формы использования ЭВМ: введение удаленных терминалов (дисплеев) позволило широко и эффективно внедрить режим разделения времени и за счет этого приблизить ЭВМ к пользователю и расширить круг решаемых задач.

Обеспечить режим разделения времени позволил новый вид операционных систем, поддерживающих мультипрограммирование. Мультипрограммирование – это способ организации вычислительного процесса, при котором на одном процессоре попеременно выполняются несколько программ. Пока одна программа выполняет операцию ввода-вывода, процессор не простаивает, как это происходило при последовательном выполнении программ (однопрограммный режим), а выполняет другую программу (многопрограммный режим). При этом каждая программа загружается в свой участок внутренней памяти, называемый разделом. Мультипрограммирование нацелено на создание для каждого отдельного пользователя иллюзии единоличного использования вычислительной машины, поэтому такие операционные системы носили интерактивный характер, когда в процессе диалога с ЭВМ пользователь решал свои задачи.

После создания в 1949 г. в Англии модели EDSAC был дан мощный импульс развитию универсальных ЭВМ, стимулировавший появление в ряде стран моделей ЭВМ, составивших первое поколение. На протяжении более 40 лет развития вычислительной техники(ВТ) появилось, сменяя друг друга, несколько поколений ЭВМ.

ЭВМ первого поколения в качестве элементной базы использовали электронные лампы и реле; оперативная память выполнялась на триггерах, позднее на ферритовых сердечниках; быстродействие было, как правило, в пределах 5-30 тыс. арифметических оп/с; они отличались невысокой надежностью, требовали систем охлаждения и имели значительные габариты. Процесс программирования требовал значительного искусства, хорошего знания архитектуры ЭВМ и ее программных возможностей. На первых порах данного этапа использовалось программирование в кодах ЭВМ (машинный код), затем появились автокоды и ассемблеры. Как правило, ЭВМ первого поколения использовались для научно-технических расчетов, а сам процесс программирования больше напоминал искусство, которым занимался весьма узкий круг математиков, инженеров-электриков и физиков.

ЭВМ EDSAC, 1949 г.

ЭВМ 2-го поколения

Создание в США 1 июля 1948 г. первого транзистора не предвещало нового этапа в развитии ВТ и ассоциировалось, прежде всего, с радиотехникой. На первых порах это был скорее опытный образец нового электронного прибора, требующий серьезного исследования и доработки. И уже в 1951 г. Уильям Шокли продемонстрировал первый надежный транзистор. Однако стоимость их была достаточно велика (до 8 долларов за штуку), и только после разработки кремниевой технологии цена их резко снизилась, способствовав ускорению процесса миниатюризации в электронике, захватившего и ВТ.

Общепринято, что второе поколение начинается с ЭВМ RCA-501, появившейся в 1959 г. в США и созданной на полупроводниковой элементной базе. Между тем, еще в 1955 г. была создана бортовая транзисторная ЭВМ для межконтинентальной баллистической ракеты ATLAS. Новая элементная технология позволила резко повысить надежность ВТ, снизить ее габариты и потребляемую мощность, а также значительно повысить производительность. Это позволило создавать ЭВМ с большими логическими возможностями и производительностью, что способствовало распространению сферы применения ЭВМ на решение задач планово-экономических, управления производственными процессами и др. В рамках второго поколения все более четко проявляется дифференциация ЭВМ на малые, средние и большие. Конец 50-х годов характеризуется началом этапа автоматизации программирования, приведшим к появлению языков программирования Fortran (1957 г.), Algol-60 и др.

ЭВМ 3-го поколения

Третье поколение связывается с появлением ЭВМ с элементной базой на интегральных схемах (ИС). В январе 1959 г. Джеком Килби была создана первая ИС, представляющая собой тонкую германиевую пластинку длиной в 1 см. Для демонстрации возможностей интегральной технологии фирма Texas Instruments создала для ВВС США бортовой компьютер, содержащий 587 ИС, и объемом (40см3) в 150 раз меньшим, чем у аналогичной ЭВМ старого образца. Но у ИС Килби был ряд существенных недостатков, которые были устранены с появлением в том же году планарных ИС Роберт Нойса. С этого момента ИС-технология начала свое триумфальное шествие, захватывая все новые разделы современной электроники и, в первую очередь, вычислительную технику.

Значительно более мощным становится программное обеспечение, обеспечивающее функционирование ЭВМ в различных режимах эксплуатации. Появляются развитые системы управления базами данных (СУБД), системы автоматизирования проектных работ (САПР); большое внимание уделяется созданию пакетов прикладных программ (ППП) различного назначения. По-прежнему появляются новые и развиваются существующие языки и системы программирования.

ЭВМ 4-го поколения

Конструктивно-технологической основой ВТ 4-го поколения становятся большие (БИС) и сверхбольшие (СБИС) интегральные схемы, созданные соответственно в 70-80-х гг. Такие ИС содержат уже десятки, сотни тысяч и миллионы транзисторов на одном кристалле (чипе). При этом БИС-технология частично использовалась уже и в проектах предыдущего поколения (IВМ/360, ЕС ЭВМ ряд-2 и др.). Наиболее важный в концептуальном плане критерий, по которому ЭВМ 4-го поколения можно отделить от ЭВМ 3-го поколения, состоит в том, что первые проектировались уже в расчете на эффективное использование современных ЯВУ и упрощения процесса программирования для проблемного программиста. В аппаратном отношении для них характерно широкое использование ИС-технологии и быстродействующих запоминающих устройств. Наиболее известной серией ЭВМ четвертого поколения можно считать IВМ/370, которая в отличие от не менее известной серии IВМ/360 3-го поколения, располагает более развитой системой команд и более широким использованием микропрограммирования. В старших моделях 370-й серии был реализован аппарат виртуальной памяти, позволяющий создавать для пользователя видимость неограниченных ресурсов оперативной памяти.

Феномен персонального компьютера (ПК) восходит к созданию в 1965 г, первой мини-ЭВМ PDP-8, которая появилась в результате универсализации специализированного микропроцессора для управления ядерным реактором. Машина быстро завоевала популярность и стала первым массовым компьютером этого класса; в начале 70-х годов число машин превысило 100 тысяч шт. Дальнейшим важным шагом был переход от мини- к микро-ЭВМ; этот новый структурный уровень ВТ начал формироваться на рубеже 70-х годов, когда появление БИС дало возможность создать универсальный процессор на одном кристалле. Первый микропроцессор Intel-4004 был создан в 1971 г. и содержал 2250 элементов, а первый универсальный микропроцессор Intel-8080, явившийся стандартом микрокомпьютерной технологии и созданный в 1974 г., содержал уже 4500 элементов и послужил основой для создания первых ПК. В 1979 г. выпускается один из самых мощных и универсальных 16-битный микропроцессор Motorolla-68000 с 70 000 элементами, а в 1981 г. - первый 32-битный микропроцессор Hewlett Packard с 450 тыс. элементами.

ПЭВМ Altair-8800

Первым ПК можно считать Altair-8800, созданный на базе микропроцессора Intel-8080 в 1974 г. Эдвардом Робертсом. Компьютер рассылался по почте, стоил всего 397 долларов и имел возможности для расширения периферийными устройствами (всего 256 байт ОЗУ!!!). Для Altair-8800 Пол Аллен и Бил Гейтс создали транслятор с популярного языка Basic, существенно увеличив интеллектуальность первого ПК (впоследствии они основали знаменитую теперь компанию Microsoft Inc). Комплектация ПК цветным монитором привела к созданию конкурирующей модели ПК Z-2; через год после появления первого ПК Altair-8800 их в производство ПК включилось более 20 различных ком-паний и фирм; начала формироваться ПК-индустрия (собственно производство ПК, их сбыт, периодические и непериодические издания, выставки, конференции и т.д.). А уже в 1977 г. были запущены в серийное производство три модели ПК Apple-2 (фирма Apple Computers), TRS-80 (фирма Tandy Radio Shark) и PET (фирма Commodore), из которых в конкурентной борьбе сначала отстающая фирма Apple становится вскоре лидером производства ПК (ее модель Apple-2 имела огромный успех). К 1980 г. корпорация Apple выходит на Уолл-стрит с самым большим акционерным капиталом и годовым доходом в 117 млн долларов.

Но уже в 1981 г. фирма IBM, во избежание потери массового рынка, начинает выпуск своих ныне широко известных серий ПК IBM PC/XT/AT и PS/2, открывших новую эпоху персональной ВТ. Выход на арену ПК-индустрии гиганта IBM ставит производство ПК на промышленную основу, что позволяет решить целый ряд важных для пользователя вопросов (стандартизация, унификация, развитое программное обеспечение и др.), которым фирма уделяла большое внимание уже в рамках производства серий IBM/360 и IBM/370. Можно с полным основанием полагать, что за короткий период времени, прошедший с дебюта Altair-8800 до IBM PC, к ВТ приобщилось больше людей, чем за весь долгий период - от аналитической машины Бэбиджа до изобретения первых ИС.

Первой ЭВМ, открывающей собственно класс супер-ЭВМ, можно считать модель Amdahl 470V16, созданную в 1975 г. и совместимую с IBM-серией. Машина использо-вала эффективный принцип распараллеливания на основе конвейерной обработки команд, а элементная база использовала БИС-технологию. В настоящее время к классу супер-ЭВМ относят модели, имеющие среднее быстродействие не менее 20 мегафлопсов (1 мегафлопс = 1 млн операций в с плавающей точкой в секунду). Первой моделью с такой производительностью явилась во многом уникальная ЭВМ ILLIAC-IV, созданная в 1975 г. в США и имеющая максимальное быстродействие порядка 50 мегафлопсов. Данная модель оказала огромное влияние на последующее развитие супер-ЭВМ с матричной архитектурой. Яркая страница в истории супер-ЭВМ связана с Cray-серией С. Крея, первая модель Cray-1 которой была создана в 1976 г. и имела пиковое быстродействие в 130 мегафлопсов. Архитектура модели базировалась на конвейерном принципе векторной и скалярной обработки данных с элементной базой на СБИС. Именно данная модель положила начало классу современных супер-ЭВМ. Следует отметить, что не смотря на ряд интересных архитектурных решений, успех модели был достигнут, в основном, за счет удачных технологических решений. Последующие модели Cray-2, Cray Х-МР, Cray-3, Cray-4 довели производительность серии до порядка 10 тыс. мегафлопсов, а модель Cray МР, использующая новую архитектуру на 64 процессорах и элементную базу на новых кремниевых микросхемах, обладала пиковой производительностью порядка 50 гигафлопсов.

Завершая экскурс в историю современной ВТ с той или иной детализацией отдельных ее этапов, следует сделать несколько существенных замечаний. Прежде всего, имеет место все более гладкий переход одного поколения ЭВМ к другому, когда идеи нового поколения в той или иной мере созревают и даже реализуются в предыдущем поколении. Особенно это заметно при переходе на ИС-технологию производства ВТ, когда определяющий акцент поколений все больше смещается с элементной базы на другие показатели: логическая архитектура, программное обеспечение, интерфейс с пользователем, сферы приложений и др. Появляется самая разнообразная ВТ, характеристики которой не укладываются в традиционные классификационные рамки; складывается впечатление, что мы находимся в начале своего рода универсализации ВТ, когда все ее классы стремятся к нивелированию своих вычислительных возможностей. Многие элементы пятого поколения в той или иной мере характерны и в наши дни.

Похожие публикации